Skip to main content

The Impact of Micronutrient Deficiencies inThe Impact of Micronutrient Deficiencies in Agricultural Soils and Crops on the Nutritional Health of Humans

  • Chapter
  • First Online:
Essentials of Medical Geology

Abstract

Cereal crops underpin the food supply for peasant farmers in developing countries, a situation that has persisted since the green revolution of the decades of the 1960s and 1970s greatly increased their productivity; indeed yields more than doubled. Ever since, the modern high-yielding, disease-resistant cereals that also show greater tolerance to environmental stresses like drought and heat have dominated the diets of subsistence farmers and urban poor alike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Grusak MA, Tzuk T, Reifen R (2000) Genetic control of seed weight and calcium concentration in chickpea seed. Plant Breed 119:427–431

    Article  Google Scholar 

  • Agius F et al (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature 21:177–181

    Article  Google Scholar 

  • Anderson A (1981) Nat Food Inst 52 (Soberg, Denmark)

    Google Scholar 

  • Anderson VP, Jack S, Monchy D, Hem N, Hok P, Bailey KB, Gibson RS (2008) Co-existing micronutrient deficiencies among stunted Cambodian infants and toddlers. Asia Pac J Clin Nutr 17(1):72–9

    Google Scholar 

  • Andrews N (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    Article  Google Scholar 

  • Baik H, Russell RM (1999) Vitamin B12 deficiency and elderly. Annu Rev Nutr 19:357–377

    Article  Google Scholar 

  • Barceloux DG (1999) Zinc. Clin Toxicol 37:279–292

    Google Scholar 

  • Beck FW, Kaplan J, Fitzgerald JT, Brewer GJ (1997) Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am J Physiol 272:E1002–E1007

    Google Scholar 

  • Bertinato J, Iskandar M, L'Abbe RM (2003) Copper deficiency induces the upragulation of the copper chaperone for Cu/Zn superoxide dismutase in weaning male rats. J Nutr 133(1):28–31

    Google Scholar 

  • Blair MW, Astudillo C, Grusak M, Graham R, Beebe S (2009) Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207

    Google Scholar 

  • Bleackley R, MacGillivray RT (2011) Transition metal homeostasis: from yeast to human disease. Biometals 24:785–809

    Article  Google Scholar 

  • Bohn T, Davidsson T, Walczyk T, Hurrell RF (2004) Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am J Clin Nutr Rev 79:418–423

    Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci 50:S20–S32

    Article  Google Scholar 

  • Bowman B, Kwakye GF, Hernandez HE, Aschner M (2011) Role of manganese in neurogenerative diseases. J Trace Elem Med Biol 25(4):191–203

    Article  Google Scholar 

  • Bryce J et al (2008) Maternal and child undernutrition 4: effective action at the national level. The Lancet 371:510–526

    Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol 23(4):281–289

    Article  Google Scholar 

  • Calesnick B, Dinan AM (1988) Zinc deficiency and zinc toxicity. Am Fam Physician 37:267–270

    Google Scholar 

  • Cao X-Y et al (1994) Iodination of irrigation water as a method of supplying iodine to a severely iodine-deficient population in XinJiang, China. Lancet 344(8915):107–110

    Article  Google Scholar 

  • Calloway DH (1995) Human nutrition: food and micronutrient relationships. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Carmel R (2007) Haptocorrin (transcobalamin I) and cobalamin deficiencies. Clin Chem 53(2):367–368

    Article  Google Scholar 

  • Cartwright G, Wintrobe MM (1964) Copper metabolism in normal subjects. Am J Clin Nutr Rev 14:224–232

    Google Scholar 

  • Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J et al (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. JAMA 276:1957–1963

    Article  Google Scholar 

  • Cordano A (1998) Clinical manifestation of nutritional copper deficiency in infants and children. Am J Clin Nutr 67:1012S–1016S

    Google Scholar 

  • Danzeisen R, Fosset C, Chariana Z, Page K, David S, McArdle HJ (2002) Placental ceruloplasmin homolog is regulated by iron and copper and is implicated in iron metabolism. Am J Physiol Cell Physiol 282:C472–C478

    Google Scholar 

  • Darshan D, Anderson GJ (2009) Interacting signals in the control of hepcidin expression. Biometals 22:77–87

    Article  Google Scholar 

  • Davis C, Greger JL (1992) Longitudinal changes of manganese-dependent superoxide dismutase and other indexes of manganese and iron status in women. Am J Clin Nutr 55:747–752

    Google Scholar 

  • De Walle H, De Jong-Van Den Berg LT (2002) Insufficient folic acid intake in the Netherlands: what about the future? Teratology 66(1):40–43

    Article  Google Scholar 

  • Dijkhuizen MA, Wieringa FT, West CE, Martuti S, Muhilal (2001) Effects of iron and zinc supplementation in Indonesian infants on micronutrient status and growth. J Nutr 131:2860–5

    Google Scholar 

  • Diplock A (1992) Selenium, antioxidant nutritions, and human diseases. Biol Trace Elem Res 33:155–156

    Article  Google Scholar 

  • Duxbury MA, Bodruzzaman M, Lauren JM, Sadat RM, Welch N, E-Elahi, Meisner CA (2005) Increasing wheat and rice productivity in the sub-tropics using micronutrient enriched seed. In: Andersen P. et al (ed) Micronutrients in South and South East Asia. Proceedings of international workshop, Kathmandu, Nepal. 8-11 Sept 2004. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, pp 187–198

    Google Scholar 

  • Edison S, Bajel A, Chandy M (2008) Iron homeostasis: new players, newer insights. Eur J Haemotol 81:411–424

    Article  Google Scholar 

  • Egli I, Davidsson L, Zeder C, Walczyk T, Hurrell R (2004) Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J Nutr 134:1077–1080

    Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  Google Scholar 

  • Elkhalil A, Osman HA, Osman O (2011) Phytic acid analysis by different bacterial phytases. Aust J Basic Appl Sci 5(11):2295–2302

    Google Scholar 

  • Flood V, Mitchell P (2007) Folate and vitamin B12 in older Australians. Med J Aus 186:321–322

    Google Scholar 

  • Freeland-Graves J, Lianis C (1994) Models to study manganese deficiency. In: Klimis-Tavantzis DJ (ed) Manganese in health and disease. CRC Press, Boca Raton, pp 59–86

    Google Scholar 

  • Friedman BJ, Freeland-Graves J, Bales CA et al (1987) Manganese balance and clinical observations in young men fed a manganese-deficient die. J Nutr 117(1):133–143

    Google Scholar 

  • Genc C, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 314:49–66

    Google Scholar 

  • Gibson RS (2003) Concurrent micronutrient deficiencies in developing countries: problems and solutions. Proc Nutr Soc 28:21–34

    Google Scholar 

  • Gibson R (2005) Principles of nutritional assessment, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Goh J, Morain CA (2003) Nutrition and adult inflammatory bowel disease. Aliment Pharmacol Ther 17(3):307–320

    Article  Google Scholar 

  • Graham RD (1984) Breeding for nutritional characteristics in cereals. Adv Plant Nutr 1:57–102

    Google Scholar 

  • Graham RD (2008) Micronutrient deficiencies in crops and their global significance Chapter 2. In: Alloway BJ (ed) Micronutrient deficiencies in global crop production

    Google Scholar 

  • Graham CG, Cardano A (1939) Copper depletion and deficiency in the malnourished infant. John Hopkins Med J 124:139–150

    Google Scholar 

  • Graham RD, Stangoulis JCR (2001) Trace element uptake and distribution in plants. J Nutr 133(5):1502S–1505S

    Google Scholar 

  • Graham RD, Welch RM (1996) Breeding for staple food crops with high micronutrient density. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Graham RD, Ascher JS, Ellis PAE, Shepherd KW (1987) Transfer to wheat of the copper efficiency factor carried on rye chromosome arm 5RL. Plant Soil 99:107–114

    Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Ortiz-Monasterio I, Bouis HE, Bonierbale M, de Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  Google Scholar 

  • Graham RD (2008) Micronutrient deficiencies in crops and their global significance. Chapter 2 in Alloway BJ (ed) Micronutrient deficiencies in global crop production (pp. 41–61), Dordrecht, Springer

    Google Scholar 

  • Graham RD, Knez M, Welch RM (2012) How much nutritional iron deficiency in humans globally is due to an underlying zinc deficiency? Adv Agron 115:1–40

    Article  Google Scholar 

  • Gromer S, Eubel JK, Lee BL, Jacob J (2005) Human selenoproteins at a glance. Cell Mol Life Sci 62(21):2414–2437

    Article  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  Google Scholar 

  • Grusak M (2002) Enhancing mineral content in plant food products. J Am Coll Nutr 21(3):178S–183S

    Google Scholar 

  • Guttieri MJ et al (2006) Agronomic performance of low phytic acid wheat. Crop Sci 46:2623–2629

    Article  Google Scholar 

  • Haas E (2001) Selenium. Health world on-line available at: http://www.healthy.net/scr/article.aspx?ID=2068

  • Hambidge M (2000) Human zinc deficiency. J Nutr 130:1344S–1349S

    Google Scholar 

  • Hathcock J (1997) Vitamins and minerals: efficacy and safety. Am J Clin Nutr 66:427–437

    Google Scholar 

  • Hentze M, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285–297

    Article  Google Scholar 

  • Hirsch IK (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122

    Google Scholar 

  • Hotz C, Brown KM (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S99–S199

    Google Scholar 

  • Huynh B, Mather DE, Wallwork H, Graham RD, Welch RM, Stangoulis JCR (2008) Genotypic variation in wheat grain fructan content revealed by a simplified HPLC method. J Cereal Sci 48:369–378

    Article  Google Scholar 

  • ICCIDD (2011) International council for the control of iodine deficiency disorders. http://www.iccidd.org/

  • Iwaya H, Kashiwaya M, Shinoki A, Lee JS, Hayashi K, Hara H, Ishizuka S (2011) Marginal zinc deficiency exacerbates experimental colitis induced by dextran sulfate sodium in rats. J Nutr 141(6):1077–1082

    Article  Google Scholar 

  • Joyce C, Deneau A, Peterson K, Ockenden I, Raboy V, Lott JNA (2005) The concentrations and distributions of phytic acid phosphorus and other mineral nutrients in wild-type and low phytic acid Js-12-LPA wheat (Triticum aestivum) grain parts. Can J Bot 83(12):1599–1607

    Google Scholar 

  • Kawashima Y et al (2001) Dietary zinc-deficiency and its recovery responses in rat liver cytosolic alcohol dehydrogenase activities. J Toxicol Sci 36:101–108

    Article  Google Scholar 

  • Keen CL (1996) Teratogenic effects of essential trace metals: Deficiencies and excesses. In: Chang L, Magos L, Suzuki T (eds) Toxicology of metals. CRC Press Inc, New York, pp 997–1001

    Google Scholar 

  • Keen CL, Uriu-Hare JY, Hawk SN, Jankowski MA, Daston GP, Kwik-Uribe CL, Rucker RB (1998) Effect of copper deficiency on prenatal development and pregnancy outcome. Am J Clin Nutr 67:1003S–1011S

    Google Scholar 

  • Keen C et al (2003) The plausability of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J Nutr 133(5):1597S–1605S

    Google Scholar 

  • Kennedy C, Nantel G, Shetty P (2003) The scourge of hidden hunger: global dimensions of micronutrient deficiencies. FAO Food, Nutr Agric 32:15–16

    Google Scholar 

  • Khabaz-Saberi H, Graham RD, Pallotta MA, Rathjen AJ, Williams KJ (2002). Genetic markers for manganese efficiency in durum wheat (Triticum turgidum L. var. durum). Plant Breed 121:224–22

    Google Scholar 

  • Khan A et al (2012) Ascorbic acid: an enigmatic molecule to development and enviromental stress in plants. Int J Appl Technol 2(3):97–111

    Google Scholar 

  • Lederer J (1986) Sélenium et Vitamine E, Jouvence, France

    Google Scholar 

  • Liu T (2003) Selenium. Chem Eng News 81(36):94

    Article  Google Scholar 

  • Lonnerdal B, Uauy R (1998) Genetic and environmental determinants of copper metabolism. Am J Clin Nutr 67:951

    Google Scholar 

  • Lonnerdal B, Sandberg AS, Sandstrom B, Kunz C (1989) Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. J Nutr 119:211–214

    Google Scholar 

  • Lonergan PF, Pallotta MA, Lorimer M, Paull JG, Barker SJ, Graham RD (2009) Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol 184:168–179

    Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  Google Scholar 

  • Lynch S (1997) Interaction of iron with other nutrients. Nutr Rev 55(4):102–110

    Article  Google Scholar 

  • Lyons GL, Stangoulis JCR, Graham RD (2004) Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the harvest plus program. Nutr Rev 62:247–252

    Google Scholar 

  • Markle W, Fisher MA, Smego RA (2007) Understanding global health. McGraw-Hill Medicall, New York

    Google Scholar 

  • Miller W (2006) Extrathyroidal benefits of iodine. J Am Physician Surg 11(4):106–110

    Google Scholar 

  • Milne D (1998) Copper intake and assessment of copper status. Am J Clin Nutr 67:1041S–1045S

    Google Scholar 

  • Mocchegiani E, Giacconi R, Muzzioli M, Cipriano C (2000) Zinc, infections and immunosenescence. Mech Ageing Dev 121(1–3):21–35

    Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Wolfgang P (2006) Biofortification of staple food crops. Am Soc Nutr 136(4):1064–1067

    Google Scholar 

  • Nguyen Van Lam H, Wallwork H, Stangoulis CRJ (2011) Identification of quantitative trait loci for grain arabinoxylan concentration in bread wheat. Crop Sci 51(3):1143–1150

    Article  Google Scholar 

  • Prasad AS (1963) Zinc and iron deficiencies in male subjects with dwarfism and hypogonadism but without ancylostomiasia, schistosomiasis or severe anemia. Am J Clin Nutr 12:437–444

    Google Scholar 

  • Prasad AS (1991) Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 53:403–412

    Google Scholar 

  • Prasad AS (2002) Zinc deficiency in patients with sickle cell disease. Am J Clin Nutr 75:181–182

    Google Scholar 

  • Prasad AS (2003) Zinc deficiency. BMJ 326:409–410

    Article  Google Scholar 

  • Prentice AM et al (2008) New challenges in studying nutrition disease interactions in the developing world. J Clin Invest 118:1322–1329

    Article  Google Scholar 

  • Raiten J et al (2011) Executive summary—biomarkers of nutrition for development: building a consensus. The Am Clin Nutr 94(2):633S–650S

    Article  Google Scholar 

  • Ramakrishnan U, Cossio GT, Neufeld ML, Rivera J, Martorell R (2004) Multimicronutrient interventions but not vitamin A or iron interventions alone can improve child growth: results of 3 meta analyses. J Nutr 134:2592–2602

    Google Scholar 

  • Rayman M (2000) The importance of selenium for human health. Lancet 356:233–241

    Article  Google Scholar 

  • Reuter DJ, Robinson JB (1997) Plant analysis: an interpretation manual 2nd edn CSIRO Publishing, Melbourne

    Google Scholar 

  • Rickes EL, Brink NG, Koniuszy FR, Wood TR, Folkers K (1948) Crystalline vitamin B12. Sci Total Environ 107:396

    Google Scholar 

  • Rimbach G, Pallauf J, Moehring J, Kraemer K, Minihane MA (2008) Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability, a literature review. Curr Top Nutraceutical Res 6(3):131–144

    Google Scholar 

  • Robertfoid M (2005) Introducing inulin-type fructans. Br J Nutr 9:S13–S25

    Article  Google Scholar 

  • Robinson N, Procter CM, Connolly EL, Guerinot ML (1999) A ferricchelate reductase for iron uptake from soils. Nature 397:694–697

    Article  Google Scholar 

  • Roy C (2010) Anemia of inflammation. Hematology 30:276–280

    Article  Google Scholar 

  • Sager M (2006) Selenium in agriculture, food and nutrition. Pure Appl Chem 78:111–133

    Article  Google Scholar 

  • Schwarz K, Foltz CM (1957) Selenium as an integral part of factor-3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292–3293

    Article  Google Scholar 

  • Seatharam B, Alpers DH (1982) Absorption and transport of cobalamin (vitamin B12). Ann Rev Nutr 2:343–349

    Article  Google Scholar 

  • Shoham S, Youdim MB (2002) The effect of iron deficiency and iron and zinc supplementation on rat hippocampus ferritin. J Neural Transm 109:1241–1256

    Article  Google Scholar 

  • Singh M (2004) Role of micronutrients for physical growth and mental development. Indian J Pediatr 71(1):59–62

    Google Scholar 

  • Sillanpaa (1990) Micronutient assessment at country level: an international study. FAO Soils Bulletin No.63 FAO, Rome

    Google Scholar 

  • Sohail S, Roland AD (1999) Fabulous phytase: phytase enzyme proving helpful to poultry producers and environment. Highlight Agric Res 1(46)

    Google Scholar 

  • Steele M, Frazer DM, Anderson AJ (2005) Systematic regulation of intestinal iron absorption. Life 57:499–503

    Google Scholar 

  • Stewart CP et al (2010) The undernutrition epidemic: an urgent health priority. Lancet 375:282

    Article  Google Scholar 

  • Subramanian KB, Bharathi C, Jegan A (2008) Response of maize to mycorrhizal colonization at varying levels of zinc and phosphorus. Biol Fertil Soils 45(2):133–144

    Article  Google Scholar 

  • Trowel L (1973) Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases. Am J Clin Nutr 26:417–427

    Google Scholar 

  • Turnlund J (1998) Human whole-body copper metabolism. Am J Clin Nutr 67:960S–964S

    Google Scholar 

  • Turnlund JR, Keyes WR, Peiffer GL, Scott KC (1998) Copper absorption, excretion and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr 67:1219–1225

    Google Scholar 

  • United Nations (1998) WHO, UNICEF, UNU (1998) IDA: Prevention, assessment and control. Report of a joint WHO/UNICEF/UNU consultation, Geneva. World Health Organization, Geneva

    Google Scholar 

  • Uriu-Adams JY, Scherr RE, Lanoue L, Keen CL (2010) Influence of copper on early development: prenatal and postnatal considerations. Biofactors 36(2):136–152

    Google Scholar 

  • Vallee B, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  Google Scholar 

  • Van Wersch JW, Janssens Y, Zandvoort JA (2002) Folic acid, vitamin B(12), and homocysteine in smoking and non-smoking pregnant women. Eur J Obstet Gynecol Reprod Biol 103:18–21

    Article  Google Scholar 

  • Walsh T et al (1994) Zinc: health effects and research priorities for the 1990’s. Environ Health Perspect 102:5–46

    Google Scholar 

  • Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73

    Article  Google Scholar 

  • Wasantwisut E, Neufeld (2012) Use of nutritional biomarkers in program evaluation in the context of developing countries. J Nutr 142(1):186S–90S

    Google Scholar 

  • Welch RM (1986) Effects of nutrient deficiencies on seed production and quality. Adv Plant Nutr 2:205–247

    Google Scholar 

  • Welch RM (1996) The optimal breeding strategy is to increase the density of promoter compounds and micronutrient minerals in seeds: caution should be used in reducing anti-nutrients in staple food crops. Micronutr Agric 1:20–22

    Google Scholar 

  • Welch RM (2008) Linkages between trace elements in food crops and human health. Micronutr Defic Glob Crop Prod 287–309

    Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crop Res 60(1):1–10

    Article  Google Scholar 

  • Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrationsas affected by genotype, native soil-zinc availability, and zincfertilization. Plant Soil 306:37–48

    Google Scholar 

  • World Health Organization (1995) http://www.who.int/nut/malnutrition_worldwide.htm Malnutrition Worldwide. World Health Organization, Geneva

  • The World Health Report 2002: reducing risks, promoting healthy life. Geneva

    Google Scholar 

  • WHO (2009) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  • WHO (2011) World Health Statistics. World Health Organization, Geneva

    Google Scholar 

  • WHO (2012) The World Health Report 2012, World Health Organization, Geneva

    Google Scholar 

  • Zimmermann B (2011) The role of iodine in human growth and development. Semin Cells Dev Biol 22:645–652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Knez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Knez, M., Graham, R.D. (2013). The Impact of Micronutrient Deficiencies inThe Impact of Micronutrient Deficiencies in Agricultural Soils and Crops on the Nutritional Health of Humans. In: Selinus, O. (eds) Essentials of Medical Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4375-5_22

Download citation

Publish with us

Policies and ethics