Skip to main content

Metal Geochemistry of a Brackish Lake: Étang Saumâtre, Haiti

  • Chapter
  • First Online:
Medical Geochemistry

Abstract

Étang Saumâtre (also known as Lac Azuéi, Lago del Fondo, or Yainagua) is a brackish lake located in eastern Haiti. Sources of irrigation and drinking water for the surrounding communities in Thomazeau, Ganthier, and Fond Parisien are freshwater springs and shallow wells tapping the complex fractured aquifer system surrounding Étang Saumâtre. In some groundwater samples, we found concentrations of trace metals exceeding World Health Organization guideline values. Lake sediment trace metal concentrations were also high. For example, chromium (Cr) ranged from 26.24 to 198.44 mg/kg, exceeding the USEPA sediment quality guideline value for heavily polluted. High concentrations of potentially toxic trace metals in both lake sediments and groundwater suggest that the population relying on this lake for drinking water, irrigation, and subsistence fishing may be at risk for metal-induced health effects. By understanding the geochemical behavior of redox-sensitive trace metals such as Cr, in the context of limnology and long-term fate and transport within the system, our results provide unique insights into the geochemical controls on remobilization of redox metals from the sediments and the potential impact of future environmental change on the sediment and water quality in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232

    Article  Google Scholar 

  • Atkins PW (2006) Shriver and Atkins inorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Binfordll MW, Dorsey KT (1991) Reconstruction of Caribbean climate change over the past 10,500 years. Nature 352:29

    Article  Google Scholar 

  • Bueno R et al (2008) The Caribbean and climate change: the costs of inaction. Tufts University, Medford. Accessed, 10(09). http://ase.tufts.edu/gdae/Pubs/rp/Caribbean-full-Eng.pdf

  • Calais E et al (2010) Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake. Nat Geosci 3(11):794–799

    Article  Google Scholar 

  • Carpenter SR et al (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Dieter H (2011) Drinking water toxicology in its regulatory framework. In: Treatise on water science. Elsevier, Oxford, pp 377–415

    Google Scholar 

  • Doney SC et al (2009) Ocean acidification: the other CO2 problem. Mar Sci 1:169–192

    Google Scholar 

  • Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336(6080):455–458

    Article  Google Scholar 

  • Edward R (2006) Calculation and uses of mean sediment quality guideline quotients: a critical review. Environ Sci Technol 40(6):1726–1736

    Article  Google Scholar 

  • Fagel N et al (2010) Geochemical evidence (C, N and Pb isotopes) of recent anthropogenic impact in south-central Chile from two environmentally distinct lake sediment records. J Quatern Sci 25(7):1100–1112

    Article  Google Scholar 

  • Farmer J, Lovell M (1986) Natural enrichment of arsenic in Loch Lomond sediments. Geochim Cosmochim Acta 50(9):2059–2067

    Article  Google Scholar 

  • Fendorf S, Wielinga BW, Hansel CM (2000) Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction. Int Geol Rev 42(8):691–701

    Article  Google Scholar 

  • Galloway JN et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  Google Scholar 

  • Gąsiorowski M, Sienkiewicz E (2010) 20th century acidification and warming as recorded in two alpine lakes in the Tatra Mountains (South Poland, Europe). Sci Total Environ 408(5):1091–1101

    Article  Google Scholar 

  • Giesy JP, Hoke RA (1990) Freshwater sediment quality criteria: toxicity bioassessment. In: Baudo R, Giesy J, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants. Lewis Publishers, Chelsea, pp 265–348

    Google Scholar 

  • Hadden RL, Minson SG (2010) The geology of Haiti: an annotated bibliography of Haiti’s geology, geography and earth science. Army Geospatial Center, Alexandria, DTIC Document

    Google Scholar 

  • Hannigan RE, Sholkovitz ER (2001) The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chem Geol 175(3–4):495–508

    Article  Google Scholar 

  • Higuera-Gundy A et al (1999) A 10,300 14C yr record of climate and vegetation change from Haiti. Quatern Res 52(2):159–170

    Article  Google Scholar 

  • Holser WT (1997) Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeogr Palaeoclimatol Palaeoecol 132(1–4):309–323

    Article  Google Scholar 

  • Horowitz AJ (1991) Primer on sediment-trace element chemistry. 2

    Google Scholar 

  • Ingersoll CG et al (2001) Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines. Arch Environ Contam Toxicol 41(1):8–21

    Article  Google Scholar 

  • IPCC (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, 996 p

    Google Scholar 

  • Jordão CP, Pereira JL, Jham GN (1997) Chromium contamination in sediment, vegetation and fish caused by tanneries in the State of Minas Gerais, Brazil. Sci Total Environ 207(1):1–11

    Article  Google Scholar 

  • Kakuwa Y, Matsumoto R (2006) Cerium negative anomaly just before the Permian and Triassic boundary event – the upward expansion of anoxia in the water column. Palaeogeogr Palaeoclimatol Palaeoecol 229(4):335–344

    Article  Google Scholar 

  • Kazi TG et al (2009) The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci Total Environ 407(3):1019–1026

    Google Scholar 

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier Science, Amsterdam

    Google Scholar 

  • Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107(3):263–283

    Article  Google Scholar 

  • Langard S, Schrauzer GN (1984) Biological and environmental aspects of chromium. Biol Trace Elem Res 6(6):539–539

    Article  Google Scholar 

  • Li S et al (2009) Water quality in the upper Han River basin, China: the impacts of land use/land cover in riparian buffer zone. J Hazard Mater 165(1–3):317–324

    Article  Google Scholar 

  • Li HB et al (2012) Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes. Chemosphere 88(10):1161–1169

    Article  Google Scholar 

  • Liu SM et al (2003) Nutrients in the Changjiang and its tributaries. Biogeochemistry 62(1):1–18

    Article  Google Scholar 

  • Luo W et al (2010) Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China. AMBIO: J Hum Environ 39(6):367–375

    Google Scholar 

  • MacDonald DD, Ingersoll C, Berger T (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39(1):20–31

    Article  Google Scholar 

  • Mann P et al (1983) Development of pull-apart basins. J Geol 91:529–554

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev Mineral Geochem 21(1):169–200

    Google Scholar 

  • Nassef M et al (2006) Determination of some heavy metals in the environment of Sadat industrial city. In: Proceeding of the 2nd environmental physics conference, Cairo University, Egypt, 2006, pp 145–152

    Google Scholar 

  • Nriagu JO, Nieboer E (1988) Chromium in the natural and human environments. Wiley-Interscience, New York

    Google Scholar 

  • Pais I, Jones JB (1997) The handbook of trace elements. CRC Press, Boca Raton

    Google Scholar 

  • Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39(3):285–304

    Article  Google Scholar 

  • Rosenmeier MF et al (2004) Recent eutrophication in the Southern Basin of Lake Petén Itzá, Guatemala: human impact on a large tropical lake. Hydrobiologia 511(1):161–172

    Article  Google Scholar 

  • Salbu B, Steinnes E (1995) Trace elements in natural waters. CRC Press, Boca Raton

    Google Scholar 

  • Schelske CL et al (1994) Low-background gamma counting: applications for 210 Pb dating of sediments. J Paleolimnol 10(2):115–128

    Article  Google Scholar 

  • Schroder S, Grotzinger J (2007) Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman. J Geol Soc 164(1):175

    Article  Google Scholar 

  • Schüring J (2000) Redox: fundamentals, processes, and applications. Springer, Heidelberg

    Google Scholar 

  • Sebrell WH et al (1959) Appraisal of nutrition in Haiti. Am J Clin Nutr 7(5):538–584

    Google Scholar 

  • Sharp Z (2007) Principles of stable isotope geochemistry. Pearson Education, Upper Saddle River

    Google Scholar 

  • Smith S et al (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11(3):1101–1116

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • USEPA (2012a) Basic information – contaminated sediments

    Google Scholar 

  • USEPA (2012b) Method detection/quantitation and calibration forum on environmental measurements. Office of the Science Advisor, US EPA

    Google Scholar 

  • WHO (2012) WHO drinking-water quality. WHO

    Google Scholar 

  • Xu L et al (2011) Sediment records of Sb and Pb stable isotopic ratios in Lake Qinghai. Microchem J 97(1):25–29

    Article  Google Scholar 

  • Zhu J, Olsen CR (2009) Beryllium-7 atmospheric deposition and sediment inventories in the Neponset River estuary, Massachusetts, USA. J Environ Radioact 100(2):192–197

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded, in part, by NSF 0959666 (Hannigan and Christian), NSF 1062374, and by a UMass President’s Science and Technology grant (Hannigan). Additional support was provided by the Department of Environmental, Earth, and Ocean Sciences at UMass, Boston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Eisen-Cuadra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Eisen-Cuadra, A., Christian, A.D., Dorval, E., Broadaway, B., Herron, J., Hannigan, R.E. (2013). Metal Geochemistry of a Brackish Lake: Étang Saumâtre, Haiti. In: Censi, P., Darrah, T., Erel, Y. (eds) Medical Geochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4372-4_9

Download citation

Publish with us

Policies and ethics