Skip to main content

Magnetite Minerals in the Human Brain: What Is Their Role?

  • Chapter
  • First Online:
Medical Geochemistry

Abstract

Although it has long been known that magnetite (Fe3O4) can be formed biochemically by bacteria, protists, and a variety of living organisms, it is only in the past 20 years that magnetite has discovered to be present in the human brain. Researchers have documented the presence of magnetite nanocrystals in the human brain using magnetometric methods and transmission electron microscopy.

To understand the mechanism behind the formation of magnetite nanocrystals in the human brain, we have chosen to take a transdisciplinary approach associating studies of magnetite biomineralization in other species and geochemical research.

Although the exact role of magnetite nanocrystals on human cerebral physiology has yet to be determined, we suspect that it plays a significant role in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banaclocha MAM (2005) Magnetic storage of information in the human cerebral cortex: a hypothesis for memory. Int J Neurosci 115:329–347

    Article  Google Scholar 

  • Banaclocha MAM (2007) Neuromagnetic dialogue between neuronal minicolumns and astroglial network: a new approach for memory and cerebral computation. Brain Res Bull 73:21–27

    Article  Google Scholar 

  • Banaclocha MAM, Bokkon I, Banaclocha HM (2010) Long-term memory in brain magnetite. Med Hypotheses 74:254–257

    Article  Google Scholar 

  • Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24:5216–5229

    Article  Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    Article  Google Scholar 

  • Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423:3924–3929

    Article  Google Scholar 

  • Devouard B, Posfai M, Hua X, Bazylinski DA, Frakel RB, Busek PB (1998) Magnetite from magnetotactic bacteria: size distribution and twinning. Am Mineral 83:1387–1398

    Google Scholar 

  • Dobson J (2001) Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett 496:1–5

    Article  Google Scholar 

  • Dobson J, Grassi P (1996) Magnetic properties of human hippocampal tissue-evaluation of artefact and contamination sources. Brain Res Bull 39:255–259

    Article  Google Scholar 

  • Faivre D, Zuddas P (2006) An integrated approach to determine the origin of magnetite nanoparticles. Earth Planet Sci Lett 243:53–60

    Article  Google Scholar 

  • Faivre D, Zuddas P (2007) Mineralogical and isotopic properties of biogenic nanocrystalline magnetites. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg

    Google Scholar 

  • Faivre D, Menguy N, Guyot F, Lopez O, Zuddas P (2005) Morphology of nanomagnetite crystals: implications for formation conditions. Am Mineral 90:1793–1800

    Article  Google Scholar 

  • Frankel RB, Blakemore RP (1991) Iron biominerals. Plenum Press, New York

    Book  Google Scholar 

  • Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  Google Scholar 

  • Hautot D, Pankhurst QA, Khan N, Dobson J (2007) Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease brain tissue. Proc R Soc Lond B 207(Suppl):1–5

    Google Scholar 

  • Hedges RW (1985) Inheritance of magnetosome polarity in magnetotropic bacteria. J Theor Biol 112:607–608

    Article  Google Scholar 

  • Ingber L (1984) Statistical mechanics of neocortical interactions deviation of short-term memory capacity. Phys Rev A 29:3346–3358

    Article  Google Scholar 

  • Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D (2010) Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assemblage in Magnetospirillum gryphiswaldense. Mol Microbiol 77:208–224

    Article  Google Scholar 

  • Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA 89:7683–7687

    Article  Google Scholar 

  • Kobayashi A, Yamamoto N, Kirschvink J (1997) Studies of inorganic crystals in biological tissue: magnetite in human tumor. J Jpn Soc Powder Powder Metall 44:294–300

    Article  Google Scholar 

  • Komeili A, Li Z, Newmann DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    Article  Google Scholar 

  • MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811–823

    Article  Google Scholar 

  • Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407

    Article  Google Scholar 

  • Murat D, Quinlan A, Vali H, Komeili A (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA 107:5593–5598

    Article  Google Scholar 

  • Nanney DL (1985) Heredity without genes: ciliate explorations of clonal heredity. Trends Genet 1:295–298

    Article  Google Scholar 

  • Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in a magnetotactic bacteria. Nature 440:110–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo Zuddas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Zuddas, P., Faivre, D., Duhamel, J.R. (2013). Magnetite Minerals in the Human Brain: What Is Their Role?. In: Censi, P., Darrah, T., Erel, Y. (eds) Medical Geochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4372-4_6

Download citation

Publish with us

Policies and ethics