Skip to main content

Linking the Macro with the Submicro Levels of Chemistry: Demonstrations and Experiments that can Contribute to Active/Meaningful/Conceptual Learning

  • Chapter
  • First Online:
Learning with Understanding in the Chemistry Classroom

Abstract

One of the most important ideas about meaningful learning in chemistry—the triple nature of chemical concepts is further developed in this chapter by Tsaparlis. His text entitled “Linking the Macro with the Submicro Levels of Chemistry: Demonstrations and Experiments that Can Contribute to Active/Meaningful/Conceptual Learning” discusses the chemistry as a multirepresentational structure. Studies have shown that students have great difficulties when trying to grasp concepts at the submicro level. In this chapter, a set of demonstrations and experiments is proposed that, if properly used in teaching by means of active-learning methodology, can contribute to meaningful learning and conceptual understanding of the particulate concepts of matter by properly linking the macro with the submicro levels. Different laboratory work is presented, and the importance of linking different levels of chemical concepts presentations is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ausubel, D. P. (2000). The acquisition and retention of knowledge: A cognitive view. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Bent, H. A. (1985). Should the mole concept be X-rated? Journal of Chemical Education, 62(1), 59.

    Article  Google Scholar 

  • Ben-Zvi, R., Silberstein, J., & Mamlok, R. (1990). Macro-micro relationships: A key to the world of chemistry. In P. L. Lijnse, P. Licht, W. De Vos, & A. J. Waarlo (Eds.), Relating macroscopic phenomena to microscopic particles (pp. 183–197). Utrecht: University of Utrecht, Centre for Science and Mathematics Education.

    Google Scholar 

  • Bonwell, C. C., & Eison, J. A. (1991). Active learning: Creating excitement in the classroom. AEHE-ERIC Higher Education Report No. 1. Washington, D.C.: Jossey-Bass.

    Google Scholar 

  • Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31(1), 21–32.

    Google Scholar 

  • Case, R. (1978a). Implications of developmental psychology for the design of instruction. In R. Glaser, A. Lesgold, J. Pellegrino, & J. Fokkema (Eds.), Cognitive psychology and instruction (pp. 441–463). New York: Plenum.

    Chapter  Google Scholar 

  • Case, R. (1978b). Intellectual development from birth to adulthood: A new-Piagetian interpretation. In R. S. Siegler (Ed.), Children’s thinking: What develop. New Jersey: Hillsdale, Erlbaum.

    Google Scholar 

  • Cervellati, R., Montuschi, A., Perugini, D., Grimellini-Tomasini, N., & Pecori Balandi, B. (1982). Investigation of secondary school students’ understanding of the mole concept in Italy. Journal of Chemical Education, 59(10), 852–856.

    Article  Google Scholar 

  • Costa, N., Marques, L., & Kempa, R. (2000). Science teachers’ awareness of findings from educational research. Chemistry Education Research and Practice, 1(1), 31–36.

    Article  Google Scholar 

  • Dierks, W. (1981). Teaching the mole. European Journal of Science Education, 3(2), 145–158.

    Article  Google Scholar 

  • Duit, R. (1986). In search of an energy concept. In R. Driver & R. Millar (Eds.), Energy matters (pp. 67–101). Leeds: University of Leeds.

    Google Scholar 

  • Duit, R., & Häußler, P. (1994). Learning and teaching energy. In P. J. Fensham, R. F. Gunstone, & R. T. White (Eds.), The content of science: A constructivist approach to its teaching and learning (pp. 185–200). London: The Falmer Press.

    Google Scholar 

  • Duncan, I. M., & Johnstone, A. H. (1978). The mole concept in chemistry. Education in Chemistry, 10(6), 213–214.

    Google Scholar 

  • Fine, L. W. (1978). Chemistry (2nd ed.). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Fowles, G. (1957). Lecture experiments in chemistry (4th ed.). London: Bell.

    Google Scholar 

  • Furió, C., Azcona, R., Guisasola, J., & Ratcliffe, M. (2000). Difficulties in teaching the concepts ‘amount of substance’ and ‘mole’. International Journal of Science Education, 22(12), 1285–1304.

    Article  Google Scholar 

  • Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Refocusing the chemistry lab: A case for laboratory-based investigations. Australian Science Teachers Journal, 41(2), 26–32.

    Google Scholar 

  • Georgiadou, A., & Tsaparlis, G. (2000). Chemistry teaching in lower secondary school with methods based on: a) Psychological theories; b) the macro, representational, and submicro levels of chemistry. Chemistry Education Research and Practice, 1(2), 217–226.

    Article  Google Scholar 

  • Gilbert, J. K., & Treagust, D. F. (Eds.) (2009). Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Gillespie, R. J. (1991). What is wrong with the general chemistry course? Journal of Chemical Education, 68(3), 192–194.

    Article  Google Scholar 

  • Gillespie, R. J. (1992a). The VSEPR model revisited. Chemical Society Reviews, 21(1), 59–68.

    Article  Google Scholar 

  • Gillespie, R. J. (1992b). Multiple bonds and the VSEPR model. Journal of Chemical Education, 69(2), 116–121.

    Article  Google Scholar 

  • Gillespie, R. J. (1992c). Electron densities and the VSEPR model of molecular structure. Canadian Journal of Chemistry, 70(3), 742–750.

    Article  Google Scholar 

  • Gillespie, R. J. (1997). Reforming the general chemistry textbook. Journal of Chemical Education, 74(5), 484–485.

    Article  Google Scholar 

  • Gillespie, R. J., Eaton, D. R., Humphreys, D. A., & Robinson, E. A. (1994). Atoms, molecules and reactions: An introduction to chemistry. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gillespie, R. J., & Matta, C. F. (2001). Teaching the VSEPR model and electron densities. Chemistry Education Research and Practice, 2(2), 73–90.

    Article  Google Scholar 

  • Gillespie, R. J., Spencer, J. N., & Moog, R. S. (1996). Demystifying introductory chemistry, Parts 1 & 2. Journal of Chemical Education, 73(7), 617–626.

    Article  Google Scholar 

  • Griffith, W. T. (1985). Factors affecting performance in introductory physics courses. American Journal of Physics, 53(9), 839–842.

    Article  Google Scholar 

  • Griffiths, A. K. (1994). A critical analysis and synthesis of research on students’ chemistry misconceptions. In H. J. Schmidt (Ed.), Problem solving and misconceptions in chemistry and physics (pp. 70–79). Hong Kong: ICASE.

    Google Scholar 

  • Griffiths, A. K., & Preston, K. R. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611–628.

    Article  Google Scholar 

  • Harris, S. P. (1983). Physics, an important factor in the success of general college chemistry students. Journal of Chemical Education, 60(9), 739–740.

    Article  Google Scholar 

  • Herron, J. D. (1978). Piaget in the classroom. Journal of Chemical Education, 55(3), 165–170.

    Article  Google Scholar 

  • Hills, G., Holman, J., Lazonby, J., Raffan, J., & Waddington, D. (1989). Introducing chemistry: The Salters’ approach. London: Heinemann Educational Books.

    Google Scholar 

  • Hudson, H. T., & Liberman, D. (1982). The combined effect of mathematics skills and formal operational reasoning on student performance in the general physics course. American Journal of Physics, 50(12), 1117–1119.

    Article  Google Scholar 

  • Hudson, H. T., & McIntire, W. R. (1977). Correlation between mathematical skills and success in physics. American Journal of Physics, 45(5), 470–471.

    Article  Google Scholar 

  • Ift, J. B., & Roberts, J. L, Jr. (1975). Frantz/Malm’s essentials of chemistry in the laboratory. San Francisco: Freeman.

    Google Scholar 

  • Ingle, R., & Shayer, M. (1971). Conceptual demand in Nuffield ‘O’ level chemistry. Education in Chemistry, 8(5), 182–183.

    Google Scholar 

  • IUPAC (1993). Recommendations for language, symbols and representation in chemistry: Atom. International Newsletter on Chemical Education, (39), 7–10.

    Google Scholar 

  • Johnstone, A. H. (1991). Thinking about thinking. International Newsletter on Chemical Education, (6), 7–11.

    Google Scholar 

  • Johnstone, A. H. (2000). The presentation of chemistry—Logical or psychological? Chemistry Education Research and Practice, 1(1), 9–15.

    Article  Google Scholar 

  • Johnstone, A. H. (2007). Science education: We know the answers, let’s look at the problems. In Proceedings of the 5 th Greek Conference Science Education and New Technologies in Education (Vol. 1, pp. 1–13). Retrieved from http://www.kodipheet.chem.uoi.gr/fifth_conf/pdf_synedriou/teyxos_A/1_kentrikes_omilies/1_KO-4-Johnstone.pdf

  • Johnstone, A. H. (2010). You can’t get there from here. Journal of Chemical Education, 87(1), 22–27.

    Article  Google Scholar 

  • Johnstone, A. H., & Morrison, T. I. (1964). Chemistry takes shape (Vol. 1). London: Heinemann.

    Google Scholar 

  • Johnstone, A. H., Morrison, T. I., & Reid, N. (1981). Chemistry about us. London: Heinemann.

    Google Scholar 

  • Johnstone, A. H., & Wham, A. J. B. (1982). The demands of practical work. Education in Chemistry, 19(3), 71–73.

    Google Scholar 

  • Jones, E. R, Jr, & Childers, R. L. (1984). Experimental evidence for the existence of atoms. The Physics Teacher, 22(6), 354–360.

    Article  Google Scholar 

  • Lazonby, J. N., Morris, J. E., & Waddington, D. J. (1984). The muddlesome mole. Education in Chemistry, 19(4), 109–111.

    Google Scholar 

  • Liberman, D., & Hudson, H. T. (1979). Correlation between logical abilities and success in physics. American Journal of Physics, 47(9), 784–786.

    Article  Google Scholar 

  • Lijnse, P. L., Licht, P., DeVos, W., & Warlo, A. J. (Eds.). (1990). Relating macroscopic phenomena to microscopic particles. Utrecht: CD-β Press.

    Google Scholar 

  • Meheut, M., & Chomat, A. (1990). The bounds of children’s atomimism: An attempt to make children build up a particulate model of matter. In P. L. Lijnse, P. Licht, W. De Vos, & A. J. Waarlo (Eds.), Relating macroscopic phenomena to microscopic particles (pp. 266–282). Utrecht: CD-β Press.

    Google Scholar 

  • Merrill, M. A. (1973). Chemistry: Process and prospect. Columbus: Bell & Howell.

    Google Scholar 

  • Millar, R. (1990). Making sense: What use are particle ideas to children. In P. L. Lijnse, P. Licht, W. De Vos, & A. J. Waarlo (Eds.), Relating macroscopic phenomena to microscopic particles (pp. 283–293). Utrecht: CD-β Press.

    Google Scholar 

  • NCRTL (National Center for Research on Teaching and Learning) (1994). A blueprint for the education of project 2061 science teachers. East Lansing: Michigan State University.

    Google Scholar 

  • Nelson, P. G. (1991). The elusive mole. Education in Chemistry, 28(4), 103–104.

    Google Scholar 

  • Nelson, P. G. (1994). Classifying substances by electrical character. Journal of Chemical Education, 71(1), 24–26.

    Article  Google Scholar 

  • Nelson, P. G. (1996a). Demonstrating constant composition. Education in Chemistry, 33(1), 22.

    Google Scholar 

  • Nelson, P. G. (1996b). To be a molecule, or not to be? Education in Chemistry, 33(5), 129–130.

    Google Scholar 

  • Nelson, P. G. (2002). Teaching chemistry progressively: From substances, to atoms and molecules, to electrons and nuclei. Chemistry Education Research and Practice, 3(2), 215–228.

    Article  Google Scholar 

  • Niaz, M., & Rodriguez, M. A. (2000). Teaching chemistry as rhetoric of conclusions or heuristic principles—A history and philosophy of science perspective. Chemistry Education Research and Practice, 1(3), 315–322.

    Article  Google Scholar 

  • Niaz, M., & Rodriguez, M. A. (2001). Do we have to introduce history and philosophy of science or is it already ‘inside’ chemistry? Chemistry Education Research and Practice, 2(2), 159–164.

    Article  Google Scholar 

  • Novick, S., & Menis, J. (1976). A study of student perceptions of the mole concept. Journal of Chemical Education, 53(11), 720–722.

    Article  Google Scholar 

  • Nussbaum, J. (1998). History and philosophy of science and the preparation for constructivist teaching: The case of particle theory. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak (Eds.), Teaching science for understandingA human constructivist view (pp. 165–194). New York: Academic Press.

    Google Scholar 

  • Papaphotis, G., & Tsaparlis, G. (2008a). Conceptual versus algorithmic learning in high school chemistry: The case of quantum chemical concepts. Part 1, Statisitcal analysis of a quantitative study. Chemistry Education Research and Practice, 9(4), 323–331.

    Article  Google Scholar 

  • Papaphotis, G., & Tsaparlis, G. (2008b). Conceptual versus algorithmic learning in high school chemistry: The case of quantum chemical concepts. Part 2, Students’ common errors, misconceptions, and difficulties in understanding. Chemistry Education Research and Practice, 9(4), 332–340.

    Article  Google Scholar 

  • Rop, J. (1999). Student perspectives on success in high school chemistry. Journal of Research in Science Teaching, 36(2), 221–237.

    Article  Google Scholar 

  • Schmidt, H. J. (1994). Stoichiometric problem solving in high school chemistry. International Journal of Science Education, 16(2), 191–200.

    Article  Google Scholar 

  • Sherman, A., & Sherman, S. J. (1983). Chemistry and our changing world. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Sienko, M. J., Plane, R. A., & Marcus, S. T. (1984). Experimental chemistry (6th ed.). Tokyo: McGraw-Hill.

    Google Scholar 

  • Staver, J. R., & Lumpe, A. T. (1993). A content analysis of the presentation of the mole concept in chemistry textbooks. Journal of Research in Science Teaching, 30(4), 321–337.

    Article  Google Scholar 

  • Staver, J. R., & Lumpe, A. T. (1995). Two investigations of student understanding of the mole concept and its use in problem solving. Journal of Research in Science Teaching, 32(2), 177–193.

    Article  Google Scholar 

  • Stromdahl, H., Tulberg, A., & Lybeck, L. (1994). The quantitatively different conceptions of 1 mole. International Journal of Science Education, 16(1), 17–26.

    Article  Google Scholar 

  • Taber, K. S. (1998). The sharing-out of nuclear attraction: Or I can’t think about physics in chemistry. International Journal of Science Education, 20(8), 1001–1014.

    Article  Google Scholar 

  • Toomey, R., DePierro, R., & Garafalo, F. (2001). Helping students to make inferences about the atomic realm by delaying the presentation of atomic structure. Chemistry Education Research and Practice, 2(3), 183–202.

    Article  Google Scholar 

  • Tsaparlis, G. (1984). The chemical bond as an atomic tug-of-war. Journal of Chemical Education, 61(8), 677.

    Article  Google Scholar 

  • Tsaparlis, G. (1989). What a single molecule does not look like–Two analogies and their effect on learning. Abstracts of papers of the American Chemical Society, 198, 176-CHED.

    Google Scholar 

  • Tsaparlis, G. (1997a). Atomic and molecular structure in chemical education. Journal of Chemical Education, 74(8), 922–926.

    Article  Google Scholar 

  • Tsaparlis, G. (1997b). Atomic orbitals, molecular orbitals, and related concepts: Conceptual difficulties among chemistry students. Research in Science Education, 27(2), 271–287.

    Article  Google Scholar 

  • Tsaparlis, G. (2004). Atomic structure. In J. J. Lagowski (Ed.), Chemistry: Foundations and applications (Vol. 1, pp. 78–87). New York: MacMillan Reference-Thomson Gale.

    Google Scholar 

  • Tsaparlis, G. (2009). Learning at the macro level: The role of practical work. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 109–136). Dordrecht: Springer.

    Google Scholar 

  • Tsaparlis, G., & Kampourakis, K. (2000). An integrated physical-science (physics and chemistry) introduction for lower-secondary level (grade 7). Chemistry Education Research and Practice, 1(2), 277–290.

    Article  Google Scholar 

  • Tsaparlis, G., Kolioulis, D., & Pappa, E. (2010). Lower-secondary introductory chemistry course: A novel approach based on science-education theories, with emphasis on the macroscopic approach, and the delayed meaningful teaching of the concepts of molecule and atom. Chemistry Education Research and Practice, 11(2), 107–117.

    Article  Google Scholar 

  • Tsaparlis, G., & Papaphotis, G. (2002). Quantum-chemical concepts: Are they suitable for secondary students? Chemistry Education Research and Practice, 3(2), 129–144.

    Article  Google Scholar 

  • Tulberg, A., Stromdahl, H., & Lybeck, L. (1994). Students’ conceptions of 1 mole and educators’ conceptions of how they teach the “mole”. International Journal of Science Education, 16(2), 145–156.

    Article  Google Scholar 

  • von Glasersfeld, E. (1989). Cognition, construction of knowledge, and teaching. Synthese, 80(1), 121–140.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to express my gratitude to Professor Alex H. Johnstone for his work and ideas, and the discussions I have had with him, all of which largely influenced this work. I also thank the two anonymous reviewers who made numerous constructive suggestions that contributed greatly to the improvement of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Tsaparlis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tsaparlis, G. (2014). Linking the Macro with the Submicro Levels of Chemistry: Demonstrations and Experiments that can Contribute to Active/Meaningful/Conceptual Learning. In: Devetak, I., Glažar, S. (eds) Learning with Understanding in the Chemistry Classroom. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4366-3_3

Download citation

Publish with us

Policies and ethics