Skip to main content

Current advances in ER stress intervention therapies

  • Chapter
  • First Online:
Endoplasmic Reticulum Stress in Health and Disease

Abstract

The endoplasmic reticulum (ER) is the site of synthesis and folding of membrane-localised and secretory proteins. The load upon ER client proteins that cells process varies considerably depending on cell type and physiological state and cells adapt to this variation by modulating both the capacity of the ER to process proteins and the load of client proteins synthesised. The flux of proteins through the ER is carefully monitored by cells for abnormalities, including a build up of mis-folded proteins. Mammalian cells have evolved an intricate set of signalling pathways from the ER to the cytosol and nucleus, to allow the cell to respond to the presence of misfolded proteins within the ER. These pathways, known collectively as the unfolded protein response (UPR), are important for normal cellular homeostasis and organism development and may play key roles in the pathogenesis of many diseases. In this chapter we will discuss a number of diseases whose pathogenesis involves ER stress and UPR. In addition we discuss the potential therapeutic avenues available for modulation of ER stress in disease states and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PERK:

PRK-like endoplasmic reticulum kinase

UPR:

unfolded protein response

ER:

endoplasmic reticulum

PI3 K:

phosphatidyl inositol 3 kinase

MAPK:

mitogen activated protein kinase

JNK:

c-Jun NH2-terminal kinase

PTEN:

phosphatase and tensin homologue on chromosome ten

ROS:

reactive oxygen species

PP:

protein phosphatase

HIF:

Hypoxia Inducible Factor

GRP:

glucose regulated protein

ATF:

activating transcription factor

XBP:

X-box binding protein

CHOP:

CCAAT/-enhancer-binding protein homologous protein

SERCA:

Sarco/Endoplasmic Reticulum Ca2 + -ATPase

IRE1:

Inositol-requiring protein 2, Serine/threonine-protein kinase/endoribonuclease

ERAD:

ER-associated protein degradation

References

  1. Hossain P, Kawar B, El Nahas M (2007) Obesity and diabetes in the developing world--a growing challenge. N Engl J Med 356:213–215

    Article  PubMed  CAS  Google Scholar 

  2. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  PubMed  CAS  Google Scholar 

  3. Bi M, Naczki C, Koritzinsky M et al (2005) ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. Embo J 24:3470–3481

    Article  PubMed  CAS  Google Scholar 

  4. Qu L, Huang S, Baltzis D et al (2004) Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3b. Genes Dev 18:261–277

    Article  PubMed  CAS  Google Scholar 

  5. Lee AS, Hendershot LM (2006) ER stress and cancer. Cancer Biol Ther 5:721–722

    Article  PubMed  CAS  Google Scholar 

  6. Amaravadi RK, Yu D, Lum JJ et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336

    Article  PubMed  CAS  Google Scholar 

  7. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  PubMed  CAS  Google Scholar 

  8. Bertolotti A, Zhang Y, Hendershot LM et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    Article  PubMed  CAS  Google Scholar 

  9. Shen J, Chen X, Hendershot LM, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111

    Article  PubMed  CAS  Google Scholar 

  10. Oikawa D, Kimata Y, Kohno K (2007) Self-association and BiP dissociation are not sufficient for activation ofthe ER stress sensor Ire1. J Cell Sci 120:1681–1688

    Article  PubMed  CAS  Google Scholar 

  11. Zhou J, Liu CY, Back SH et al (2006) The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc Natl Acad Sci USA 103:14343–14348

    Article  PubMed  CAS  Google Scholar 

  12. Dorner AJ, Wasley LC, Kaufman RJ (1992) Over-expression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J 11:1563–1571

    PubMed  CAS  Google Scholar 

  13. Liu CY, Schroder M, Kaufman RJ (2000) Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 275:24881–24885

    Article  PubMed  CAS  Google Scholar 

  14. Chen X, Shen J, Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277:13045–13052

    Article  PubMed  CAS  Google Scholar 

  15. Nadanaka S, Okada T, Yoshida H, Mori K (2007) Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol Cell Biol 27:1027–1043

    Article  PubMed  CAS  Google Scholar 

  16. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  PubMed  CAS  Google Scholar 

  17. Hetz C, Bernasconi P, Fisher J et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312:572–576

    Article  PubMed  CAS  Google Scholar 

  18. Kaneko M, Niinuma Y, Nomura Y (2003) Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 26:931–935

    Article  PubMed  CAS  Google Scholar 

  19. Deng J, Lu PD, Zhang Y et al (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24:10161–10168

    Article  PubMed  CAS  Google Scholar 

  20. Hu P, Han Z, Couvillon AD et al (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26:3071–3084

    Article  PubMed  CAS  Google Scholar 

  21. Hotamisligil GS (2003) Diabetes Mellitus. In: LeRoith D, Taylor SI, Olefsky JM (eds). Lippincott. Williams & Wilkins, Philadelphia

    Google Scholar 

  22. Hirosumi J, Tuncman G, Chang L et al (2002) A central role for JNK in obesity and insulin resistance. Nature 21:333–336

    Article  CAS  Google Scholar 

  23. Yuan M, Konstantopoulos N, Lee J et al (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk beta. Science 31:293;1673–1677

    Article  Google Scholar 

  24. Araki E, Oyadomari S, Mori M (2003) Endoplasmic reticulum stress and diabetes mellitus. Intern Med 42:7–14

    Article  PubMed  Google Scholar 

  25. Gregor MG, Hotamisligil GS (2007) Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48:1905–1914

    Article  PubMed  CAS  Google Scholar 

  26. Ikeda J, Kaneda S, Kuwabara K (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem Biophys Res Commun 230:94–99

    Article  PubMed  CAS  Google Scholar 

  27. Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  CAS  Google Scholar 

  28. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 6:900–917

    Article  CAS  Google Scholar 

  29. Borradaile NM, Han X, Harp JD (2006) Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47:2726–2737

    Article  PubMed  CAS  Google Scholar 

  30. Kharroubi I, Ladriere L, Cardozo AK et al (2004) Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappa B and endoplasmic reticulum stress. Endocrinology 145:5087–5096

    Article  PubMed  CAS  Google Scholar 

  31. Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291:E275--E281

    Article  PubMed  CAS  Google Scholar 

  32. Cao H, Gerhold K, Mayers JR et al (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944

    Article  PubMed  CAS  Google Scholar 

  33. Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the endoplasmic reticulum to activation of JNK protein kinases by transmembrane protein kinaseIRE1. Science 287:664–666

    Article  PubMed  CAS  Google Scholar 

  34. Nishitoh H, Matsuzawa A, Tobiume K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  PubMed  CAS  Google Scholar 

  35. Nishitoh H, Saitoh M, Mochida Y et al (1998) ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2:389–395

    Article  PubMed  CAS  Google Scholar 

  36. Nakatani Y, Kaneto H, Kawamori D et al (2005) Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 280:847–851

    PubMed  CAS  Google Scholar 

  37. Ozawa K, Miyazaki M, Matsuhisa M et al (2005) The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes 54:657–663

    Article  PubMed  CAS  Google Scholar 

  38. Yan W, Frank CL, Korth MJ et al (2002) Control of PERK eIF2alpha kinase activity by theendoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci USA 99:15920–15925

    Article  PubMed  CAS  Google Scholar 

  39. Ladiges WC, Knoblaugh SE, Morton JF et al (2005) Pancreatic beta-cell failure anddiabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 54:1074–1081

    Article  PubMed  CAS  Google Scholar 

  40. Tsukamoto K, Ribick M, Schuit FC, Kaufman RJ (2005) Control of mRNA translation preserves endoplasmic reticulum function in b cells and maintains glucose homeostasis. Nat Med 11:757–764

    Article  PubMed  CAS  Google Scholar 

  41. Scheuner D, Song B, McEwen E et al (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–1176

    Article  PubMed  CAS  Google Scholar 

  42. Kammoun HL, Chabanon H, Hainault I et al (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119:1201–1215

    Article  PubMed  CAS  Google Scholar 

  43. Laybutt DR, Preston AM, Akerfeldt MC et al (2007) Endoplasmic reticulum stress contributes to βcell apoptosis in type 2 diabetes. Diabetologia 50:752–763

    Article  PubMed  CAS  Google Scholar 

  44. Marchetti P, Bugliani M, Lupi R et al (2007) The endoplasmic reticulum in pancreatic b-cells of type 2 diabetes patients. Diabetologia 5:2486–2494

    Article  CAS  Google Scholar 

  45. Delephine M, Nicolino M, Barrett T et al (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase-3, in mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25:406–409

    Article  Google Scholar 

  46. Harding HP, Zeng H, Zhang Y et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in survival of secretory cells. Mol Cell 7:1153–1163

    Article  PubMed  CAS  Google Scholar 

  47. Xue X, Piao JH, Nakajima A et al (2005) Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulationby TNFalpha. J Biol Chem 280:33917–33925

    Article  PubMed  CAS  Google Scholar 

  48. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    Article  PubMed  CAS  Google Scholar 

  49. Hu PHZ, Couvillon AD, Kaufman RJ, Exton JH (2006) Autocrine tumor necrosis factor α links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1a-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol Cell. Biol 26:3071–3084

    Article  PubMed  CAS  Google Scholar 

  50. Tuncman, GJ, Hirosumi G, Solinas L et al (2006) Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci USA 103:10741–10746

    Article  PubMed  CAS  Google Scholar 

  51. Erbay E, Babaev VR, Mayers JR et al (2009) Reducing endoplasmic reticulum stress through a macrophage lipid chaperonealleviates atherosclerosis. Nat Med 15:1383–1391

    Article  PubMed  CAS  Google Scholar 

  52. West DB, Prinz WA, Francendese AA, Greenwood MR (1987) Adipocyte blood flow is decreased in obese Zucker rats. Am J Physiol 253:R228--R233

    PubMed  CAS  Google Scholar 

  53. Hosogai N, Fukuhara A, Oshima K et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56:901–911

    Article  PubMed  CAS  Google Scholar 

  54. Nakamura T, Furuhashi M, Li P et al (2010) Doublestranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140:338–348

    Article  PubMed  CAS  Google Scholar 

  55. Oyadomari S, Koizumi A, Takeda K et al (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 109:525–532

    PubMed  CAS  Google Scholar 

  56. Eizirik DL, Flodstrom M, Karlsen AE, Welsh N (1996) The harmony of the spheres: inducible nitric oxidesynthase and related genes in pancreatic beta cells. Diabetologia 39:875–890

    Article  PubMed  CAS  Google Scholar 

  57. Cardozo AK, Heimberg H, Heremans Y et al (2001) A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. J Biol Chem 276:48879–48886

    Article  PubMed  CAS  Google Scholar 

  58. Cardozo AK, Ortis F, Storling J et al (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2 + ATPase 2b and deplete endoplasmic reticulum Ca2 + , leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–461

    Article  PubMed  CAS  Google Scholar 

  59. Song B, Scheuner D, Ron D et al (2008) Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 118:3378–3389

    Article  PubMed  CAS  Google Scholar 

  60. Pirot P, Naamane N, Libert F et al (2007) Global profiling of genes modified by endoplasmic reticulum stress in pancreatic beta cells reveals the early degradation of insulin mRNAs. Diabetologia 5:1006–1014

    Article  CAS  Google Scholar 

  61. Hartman MG, Lu D, Kim M et al (2004) Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol 24:5721–5732

    Article  PubMed  CAS  Google Scholar 

  62. De Souza CT, Araujo EP, Bordin S et al (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146:4192–4199

    Article  PubMed  CAS  Google Scholar 

  63. Hirosumi J, Tuncman G, Chang L et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  PubMed  CAS  Google Scholar 

  64. Zhang X, Zhang G, Zhang H et al (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link over-nutrition to energy imbalance and obesity. Cell 135:61–73

    Article  PubMed  CAS  Google Scholar 

  65. Basseri S, Lhoták S, Sharma AM, Austin RC (2009) The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response. J Lipid Res 12:2486–2501

    Google Scholar 

  66. Ozcan U, Yilmaz E, Ozcan L et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140

    Article  PubMed  CAS  Google Scholar 

  67. Ozcan L, Ergin AS, Lu A et al (2009) Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 7:35–51

    Article  CAS  Google Scholar 

  68. Hao S, Ross-Inta CM, Gietzen DW (2010) The sensing of essential amino acid deficiency in the anterior piriform cortex, that requires the uncharged tRNA/GCN2 pathway, is sensitive to wortmannin but not rapamycin. Pharmacol Biochem Behav 3:333–340

    Google Scholar 

  69. Maurin AC, Jousse C, Balage M et al (2005) GCN2 regulates feeding behavior to maintain amino acid homeostasis in omnivores. Med Sci (Paris) 10:799–801

    Google Scholar 

  70. Xu TY, Chen RH, Wang P (2010) 4-Phenyl butyric acid does not generally reduce glucose levels in rodent models of diabetes. Clin Exp Pharmacol Physiol 4:441–446

    Google Scholar 

  71. Tsunekawa S, Yamamoto N, Tsukamoto K et al (2007) Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J Endocrinol 1:65–74

    Google Scholar 

  72. Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3:153–165

    Article  PubMed  CAS  Google Scholar 

  73. Lipson KL, Fonseca SG, Ishigaki S et al (2006) Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-residentprotein kinase IRE1. Cell Metab 4:245–254

    Google Scholar 

  74. Yusta B, Baggio LL, Estall JL et al (2006) GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 4:391–406

    Article  PubMed  CAS  Google Scholar 

  75. Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  PubMed  CAS  Google Scholar 

  76. Sokka AL, Putkonen N, Mudo G et al (2007) Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 27:901–908

    Article  PubMed  CAS  Google Scholar 

  77. Yuan M, Konstantopoulos N, Lee J et al (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted distruption of Ikkb. Science 293;1673–1677

    Article  Google Scholar 

  78. Hundal RS, Petersen KF, Mayerson AB et al (2002) Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 109:1321–1326

    PubMed  CAS  Google Scholar 

  79. Liu G, Rondinone CM (2005) JNK: bridging the insulin signaling and inflammatory pathway. Curr Opin Investig Drugs 6:979–987

    PubMed  CAS  Google Scholar 

  80. Makowski L, Boord JB, Maeda K et al (2001) Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nature Med 7:699–705

    Article  PubMed  CAS  Google Scholar 

  81. Maeda K, Cao H, Kono K et al (2005) Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab 1:107–119

    Article  PubMed  CAS  Google Scholar 

  82. Han MS, Chung KW, Cheon HG et al (2009) Imatinib mesylate reduces endoplasmic reticulum stress and induces remission of diabetes in db/db mice. Diabetes 2:329–336

    Google Scholar 

  83. Han KL, Choi SJ, Lee JY et al (2008) Therapeutic potential of peroxisome proliferators--activated receptor-α/γ dual agonist with alleviation of endoplasmic reticulum stress for the treatment of diabetes. Diabetes 57:737–745

    Article  PubMed  CAS  Google Scholar 

  84. Lee AS (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67:3496–3499

    Article  PubMed  CAS  Google Scholar 

  85. Tsutsumi S, Namba T, Tanaka Kl et al (2006) Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene 25:1018–1029

    Article  PubMed  CAS  Google Scholar 

  86. Zu K, Bihani T, Lin A et al (2006) Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25:546–554

    PubMed  CAS  Google Scholar 

  87. Saito S, Furuno A, Sakurai J et al (2009) Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation. Cancer Res 69:4225–4234

    Article  PubMed  CAS  Google Scholar 

  88. Shin-Ya K (2005) Novel antitumor and neuroprotective substances discovered by characteristic screenings based on specific molecular targets. Biosci Biotechnol Biochem 69:867–872

    Article  PubMed  CAS  Google Scholar 

  89. Adams J, Palombella VJ, Sausville EA et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    PubMed  CAS  Google Scholar 

  90. Ling YH, Liebes L, Jiang JD et al (2003) Mechanisms of proteasome inhibitor PS-341-induced G (2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res 9:1145–1154

    PubMed  CAS  Google Scholar 

  91. Cusack JC Jr., Liu R, Houston M et al (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61:3535–3540

    PubMed  CAS  Google Scholar 

  92. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 100:9946–9951

    Article  PubMed  CAS  Google Scholar 

  93. Fels DR, Ye J, Segan AT et al (2008) Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. Cancer Res 68:9323–9330

    Article  PubMed  CAS  Google Scholar 

  94. Nawrocki ST, Carew JS, Dunner K Jr et al (2005) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65:11510–11519

    Article  PubMed  CAS  Google Scholar 

  95. Tirosh B, Iwakoshi NN, Glimcher LH, Ploegh HL (2006) Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J Biol Chem 281:5852–5860

    Article  PubMed  CAS  Google Scholar 

  96. Wang Q, Mora-Jensen H, Weniger MA et al (2009) ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc Natl Acad Sci USA 106:2200–2205

    Article  PubMed  CAS  Google Scholar 

  97. Wang Q, Li L, Ye Y (2008) Inhibition of p97-dependent protein degradation by Eeyarestatin I. J Biol Chem 283:7445–7454

    Article  PubMed  CAS  Google Scholar 

  98. Johnson AJ, Hsu AL, Lin HP et al (2002) The cyclo-oxygenase-2 inhibitor celecoxib perturbs intracellular calcium by inhibiting endoplasmic reticulum Ca2 + ATPases: a plausible link with its anti-tumour effect and cardiovascular risks. Biochem J 366:831–837

    PubMed  CAS  Google Scholar 

  99. Schönthal AH (2007) Direct non-cyclooxygenase-2 targets of celecoxib and their potential relevance for cancer therapy. Br J Cancer 97:1465–1468

    Article  PubMed  CAS  Google Scholar 

  100. Ogata M, Hino SI, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  PubMed  CAS  Google Scholar 

  101. Kouroku Y, Fujita E, Tanida I et al (2007) ER stress (PERK/eIFa phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Diff 14:230–239.

    Article  CAS  Google Scholar 

  102. Martinet W, Agostinis P, Vanhoecke B et al (2009) Autophagy in disease: a double-edged sword with therapeutic potential. Clin Sci 116:697–712

    Google Scholar 

  103. Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Google Scholar 

  104. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115;2679–2688

    Google Scholar 

  105. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70

    Article  PubMed  CAS  Google Scholar 

  106. Xue L, Fletcher GC, Tolkovsky AM (2001) Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 11:361–365

    Article  PubMed  CAS  Google Scholar 

  107. de Medina P, Silvente-Poirot S, Poirot M (2009) Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy 5:1066–1067

    Article  PubMed  CAS  Google Scholar 

  108. Qadir MAB, Kwok WH, Dragowska KH et al (2008) Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 112:389–403

    Article  PubMed  CAS  Google Scholar 

  109. Shao YZ, Gao Marks PA, Jiang X (2004) Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101:18030–18035

    Article  PubMed  CAS  Google Scholar 

  110. Carew JS, Nawrocki ST, Kahue CN et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322

    Article  PubMed  CAS  Google Scholar 

  111. Lee SB, Tong SY, Kim JJ et al (2007) Caspase-independent autophagic cytotoxicity in etoposide-treated CaSki cervical carcinoma cells. DNA Cell Biol 26:713–720

    Article  PubMed  CAS  Google Scholar 

  112. Cosse JP, Rommelaere G, Ninane N et al (2010) BNIP3 protects HepG2 cells against etoposide-induced cell death under hypoxia by an autophagy-independent pathway. Biochem Pharmacol 80: 1160–1169

    Article  PubMed  CAS  Google Scholar 

  113. Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558

    Article  PubMed  CAS  Google Scholar 

  114. Shingu T, Fujiwara K, Bogler O et al (2009) Stage-specific effect of inhibition of autophagy on chemotherapy-induced cytotoxicity. Autophagy 5:537–539

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Booth, L. et al. (2012). Current advances in ER stress intervention therapies. In: Agostinis, P., Afshin, S. (eds) Endoplasmic Reticulum Stress in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4351-9_19

Download citation

Publish with us

Policies and ethics