Skip to main content

Signaling the Unfolded Protein Response in cancer

  • Chapter
  • First Online:
Endoplasmic Reticulum Stress in Health and Disease
  • 1546 Accesses

Abstract

Cancer cells present a deregulated replication cycle and are able to grow quickly in hostile environments. These cells can be subjected to many environmental challenges such as hypoxia, nutrient deprivation, remodeling of the environmental space or presence of chemotherapeutic agents. Moreover cancer cells also have to cope with elevated oxidative stress, high DNA replication and protein synthesis rates. As a consequence cancer cells must show high adaptive capabilities in order to cope with such stresses. In the past couple of years, the Unfolded Protein Response (UPR) has emerged as an important adaptive response for cancer cells to manage these stresses and to survive under challenging conditions. Although the UPR is primarily a pro-survival response, it can also induce cell death if the stress is not alleviated. In addition to presenting enhanced adaptive capacity, cancer cells have also developed strategies to get around UPR-induced death signals. In the present chapter, we describe how cancer cells use the UPR or have altered the UPR signaling machinery to gain selective advantage over surrounding cells. We also discuss how UPR signaling is connected to classical carcinogenic pathways. Finally, we will focus our attention in particular on IRE1 signaling pathways. Collectively these elements constitute an integrated adaptive system in cancer and therefore open the way to new potential anticancer therapeutic avenues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARE:

antioxidant responsive element

ATF4:

activating transcription factor-4

ATF6:

activating transcription factor-6

ASK1:

apoptosis signal-regulating kinase-1

BI1:

BAX inhibitor-1

BiP:

immunoglobulin heavy chain-binding protein

CHOP:

C/EBP-homologous protein

EDEM1:

ER degradation enhancing mannosidase-like protein-1

eIF2α:

alpha-subunit of the eukaryotic translation initiation factor-2

ER:

endoplasmic reticulum

ERAD:

ER-associated degradation

ERdj:

ER DNAJ like

Ero1:

ER oxidoreductin 1

ERSE:

ER stress-response element

GADD34:

growth arrest and DNA damage 34

GRP78:

78 kDa glucose-regulated protein

GRP94:

94 kDa glucose-regulated protein

IRE1:

inositol-requiring protein-1

IP3R1:

inositol 1,4,5-trisphosphate receptor 1

JNK:

c-Jun N-terminal kinase

Keap1:

Kelch-like ECH-associated protein-1

MAP:

mitogen-activated protein

MAPK:

MAP kinase

MAPKK:

MAP kinase kinase

MAPKKK:

MAP kinase kinase kinase

Nrf2:

nuclear factor-E2-related factor-2

PERK:

protein kinase RNA-like ER kinase

PI3 K:

phosphoinositide-3-kinase

PDI:

protein disulfide isomerase

RIDD:

regulated IRE1-dependent mRNA decay

ROS:

reactive oxygen species

sXBP1:

spliced form of XBP1

S1P and S2P:

site-1 and site-2 proteases

TNF:

tumor necrosis factor

TRAF2:

TNF receptor-associated factor-2

UPR:

unfolded protein response

XBP1:

X-box binding protein-1

References

  1. Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cell Biochem 110(6):1299–1305

    Article  PubMed  CAS  Google Scholar 

  2. Sun FC, Wei S, Li CW, Chang YS, Chao CC, Lai YK (2006) Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J 396(1):31–39

    Article  PubMed  CAS  Google Scholar 

  3. Philippova MD, Ivanov MB, Joshi E, Kyriakakis K, Rupp T, Afonyushkin V, Bochkov P. Erne TJ, Resink (2008) Identification of proteins associating with glycosylphosphatidylinositol- anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol 28(12):4004–4017

    Google Scholar 

  4. Shani G, Fischer WH, Justice NJ, Kelber JA, Vale W, Gray PC (2008) GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol 28(2):666–677

    Article  PubMed  CAS  Google Scholar 

  5. Misra UK, Deedwania R, Pizzo SV (2005) Binding of activated a2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem 280(28):26278–26286

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749

    Article  PubMed  CAS  Google Scholar 

  7. Gülow K, Bienert D, Haas IG (2002) BiP is feed-back regulated by control of protein translation efficiency. J Cell Sci 115(Pt 11):2443–2452

    PubMed  Google Scholar 

  8. Weitzmann A, Volkmer J, Zimmermann R (2006) The nucleotide exchange factor activity of Grp170 may explain the non-lethal phenotype of loss of Sil1 function in man and mouse. FEBS Lett. 580(22):5237–5240

    Article  PubMed  CAS  Google Scholar 

  9. Nicchitta C (2006) http://www.signaling-gateway.org. GRP94, UCSD Nature Molecule Pages. doi:10.1038/mp.a000645.01

    Google Scholar 

  10. Ogawa S (2003) ORP150 (150 kDa oxygen regulated protein) suppressed neuronal cell death. Nippon Yakurigaku Zasshi 121(1):43–48

    Article  PubMed  CAS  Google Scholar 

  11. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103

    Article  PubMed  CAS  Google Scholar 

  12. Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D, Cai J, Groshen S, Lieskovsky G, Skinner DG, Lee AS, Pinski J (2007) Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol 38(10):1547–1552

    Google Scholar 

  13. Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS (2006) GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res 66:7849–7853

    Article  PubMed  CAS  Google Scholar 

  14. Su R Z, Li H, Li H, Song C, Bao J, Wei L, Cheng (2010) Grp78 promotes the invasion of hepatocellular carcinoma. BMC Cancer 10:20

    Google Scholar 

  15. Pyrko P, Schonthal AH, Hofman FM, Chen TC, Lee AS (2007) The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67:9809–9816

    Article  PubMed  CAS  Google Scholar 

  16. Zhuang L, Scolyer RA, Lee CS, McCarthy SW, Cooper WA, Zhang XD, Thompson JF, Hersey P (2009) Expression of glucose-regulated stress protein GRP78 is related to progression of melanoma. Histopathology 54:462–470

    Article  PubMed  Google Scholar 

  17. Langer R, Feith M, Siewert JR, Wester HJ, Hoefler H (2008) Expression and clinical significance of glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus. BMC Cancer 8:70

    Article  PubMed  CAS  Google Scholar 

  18. Weinreb I, Goldstein D, Irish J, Perez-Ordonez B (2009) Expression patterns of Trk-A, Trk-B, GRP78, and p75NRT in olfactory neuroblastoma. Hum Pathol 40:1330–1335

    Article  PubMed  CAS  Google Scholar 

  19. Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ, Mao C, Ye R, Wang M, Pen L, Dubeau L, Groshen S, Hofman FM, Lee AS (2008) Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 68(2):498–505

    Google Scholar 

  20. Chinni SR, Falchetto R, Gercel-Taylor C, Shabanowitz J, Hunt DF, Taylor DD (1997) Humoral immune responses to cathepsin D and glucose-regulated protein 78 in ovarian cancer patients. Clin Cancer Res 3:1557–1564

    PubMed  CAS  Google Scholar 

  21. Gonzalez-Gronow M, Cuchacovich M, Llanos C, Urzua C, Gawdi G, Pizzo SV (2006). Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res. 66:11424–11431

    Google Scholar 

  22. Papalas JA, Vollmer RT, Gonzalez-Gronow M, Pizzo SV, Burchette J, Youens KE, Johnson KB, Selim MA (2010) Patterns of GRP78 and MTJ1 expression in primary cutaneous malignant melanoma. Mod Pathol 23:134–143

    Article  PubMed  CAS  Google Scholar 

  23. Rauschert N, Brandlein S, Holzinger E, Hensel F, Muller-Hermelink HK, Vollmers HP (2008) A new tumor-specific variant of GRP78 as target for antibody-based therapy. Lab Invest 88:375–386

    Article  PubMed  CAS  Google Scholar 

  24. Chen X, Ding Y, Liu CG, Mikhail S, Yang CS (2002) Overexpression of glucose-regulated protein 94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis 23(1):123–130

    Article  PubMed  CAS  Google Scholar 

  25. Zheng HC, Takahashi H, Li XH, Hara T, Masuda S, Guan YF, Takano Y (2008) Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum Pathol 39(7):1042–1049

    Article  PubMed  CAS  Google Scholar 

  26. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274

    Article  PubMed  CAS  Google Scholar 

  27. Brewer JW, Hendershot LM, Sherr CJ, Diehl JA (1999) Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci U S A 96(15):8505–8510

    Article  PubMed  CAS  Google Scholar 

  28. Brewer JW, Diehl JA (2000) PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A 97(23):12625–12630

    Article  PubMed  CAS  Google Scholar 

  29. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108

    Google Scholar 

  30. Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 101(31):11269–11274

    Article  PubMed  CAS  Google Scholar 

  31. Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339:135–141

    Article  PubMed  CAS  Google Scholar 

  32. Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318(5):1351–1365

    Google Scholar 

  33. Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Cavener DR, Wek RC (2004) Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 24(3):1365–1377

    Article  PubMed  CAS  Google Scholar 

  34. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21(4):1249–1259

    Article  PubMed  CAS  Google Scholar 

  35. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. Embo J 24(6):1243–1255

    Article  PubMed  CAS  Google Scholar 

  36. Novoa I., Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153(5):1011–1022

    Article  CAS  Google Scholar 

  37. Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38(3):317–332

    Article  PubMed  CAS  Google Scholar 

  38. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–1163

    Article  PubMed  CAS  Google Scholar 

  39. Dhakshinamoorthy S, Porter AG (2004) Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J Biol Chem 279(19):20096–20107

    Article  PubMed  CAS  Google Scholar 

  40. Blais JD, Addison CL, Edge R, Falls T, Zhao H, Wary K, Koumenis C, Harding HP, Ron D, Holcik M, Bell JC (2006) Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26(24):9517–9532

    Article  PubMed  CAS  Google Scholar 

  41. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C, Cavener D, Diehl JA (2010) PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 29(27):3881–3895

    Article  PubMed  CAS  Google Scholar 

  42. Little JL, Wheeler FB, Fels DR, Koumenis C, Kridel SJ (2007) Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res 67(3):1262–1269

    Article  PubMed  CAS  Google Scholar 

  43. Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA (2006) Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66(3):1702–1711

    Article  PubMed  CAS  Google Scholar 

  44. Armstrong JL, Flockhart R, Veal GJ, Lovat PE, Redfern CP (2010) Regulation of endoplasmic reticulum stress-induced cell death by ATF4 in neuroectodermal tumor cells. J Biol Chem 285(9):6091–6100

    Article  PubMed  CAS  Google Scholar 

  45. Ameri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL (2004) Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells. Blood 103(5):1876–1882

    Article  PubMed  CAS  Google Scholar 

  46. Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S (2008) Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci U S A 105(36):13568–13573

    Article  PubMed  CAS  Google Scholar 

  47. Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, Eom HS, Yoo NJ, Lee SH (2010) Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 220(4):446–451

    Article  PubMed  CAS  Google Scholar 

  48. Shibata T, Kokubu M, Gotoh M, Ojima H, Ohta T, Yamamoto M, Hirohashi S (2008) Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135(4):1358–1368, 1368 e1–e4

    Article  PubMed  CAS  Google Scholar 

  49. Taguchi K, Maher JM, Suzuki T, Kawatani Y, Motohashi H, Yamamoto M (2010) Genetic analysis of cytoprotective functions supported by graded expression of Keap1. Mol Cell Biol 30(12):3016–3026

    Article  PubMed  CAS  Google Scholar 

  50. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16(2):123–140

    Article  PubMed  CAS  Google Scholar 

  51. Asada R, Kanemoto S, Kondo S, Saito A, Imaizumi K (2011) The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem 149(5):507–518

    Article  PubMed  CAS  Google Scholar 

  52. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10(11):3787–3799

    PubMed  CAS  Google Scholar 

  53. Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6(6):1355–1364

    Article  PubMed  CAS  Google Scholar 

  54. Chen X, Shen J, Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277(15):13045–13052

    Article  PubMed  CAS  Google Scholar 

  55. Nadanaka S, Yoshida H, Mori K (2006) Reduction of disulfide bridges in the lumenal domain of ATF6 in response to glucose starvation. Cell Struct Funct. 31(2): 127–134

    Article  PubMed  CAS  Google Scholar 

  56. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20(18):6755–6767

    Article  PubMed  CAS  Google Scholar 

  57. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    Article  PubMed  CAS  Google Scholar 

  58. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O, Yamamoto N, Yamamoto M (2003) Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38(5):605–614

    Article  PubMed  CAS  Google Scholar 

  59. Arai M, Kondoh N, Imazeki N, Hada A, Hatsuse K, Kimura F, Matsubara O, Mori K, Wakatsuki T, Yamamoto M (2006) Transformation-associated gene regulation by ATF6alpha during hepatocarcinogenesis. FEBS Lett 580:184–190

    Article  PubMed  CAS  Google Scholar 

  60. Imagawa Y, Hosoda A, Sasaka S, Tsuru A, Kohno K (2008) RNase domains determine the functional difference between IRE1alpha and IRE1beta. FEBS Lett 582(5):656–660

    Article  PubMed  CAS  Google Scholar 

  61. Bertolotti A, Wang X, Novoa I, Jungreis R, Schlessinger K, Cho JH, West AB, Ron D (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest 107(5):585–593

    Article  PubMed  CAS  Google Scholar 

  62. Yuan L, Cao Y, Oswald F, Knöchel W (2008) IRE1beta is required for mesoderm formation in Xenopus embryos. Mech Dev 125(3–4):207–222

    Article  PubMed  CAS  Google Scholar 

  63. Iqbal J, Dai K, Seimon T, Jungreis R, Oyadomari M, Kuriakose G, Ron D, Tabas I, Hussain MM (2008) IRE1beta inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metab 7(5):445–455

    Article  PubMed  CAS  Google Scholar 

  64. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332

    Article  PubMed  CAS  Google Scholar 

  65. Lee KP, Dey M, Neculai D, Cao C, Dever TE, Sicheri F (2008) Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132(1):89–100

    Article  PubMed  CAS  Google Scholar 

  66. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666

    Article  PubMed  CAS  Google Scholar 

  67. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16(11):1345–1355

    Article  PubMed  CAS  Google Scholar 

  68. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276(17):13935–13940

    PubMed  CAS  Google Scholar 

  69. Nguyên DT, Kebache S, Fazel A, Wong HN, Jenna S, Emadali A, Lee EH, Bergeron JJ, Kaufman RJ, Larose L, Chevet E (2004) Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress. Mol Biol Cell 15(9):4248–4260

    Article  PubMed  Google Scholar 

  70. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866

    Article  PubMed  CAS  Google Scholar 

  71. Uemura A, Oku M, Mori K, Yoshida H (2009) Unconventional splicing of XBP1 mRNA occurs in the cytoplasm during the mammalian unfolded protein response. J Cell Sci 122(Pt 16):2877–2886

    Article  PubMed  CAS  Google Scholar 

  72. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459

    Article  PubMed  CAS  Google Scholar 

  73. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4(2):265–271

    Article  PubMed  CAS  Google Scholar 

  74. Hollien J, Weissman JS (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313(5783):104–107

    Article  PubMed  CAS  Google Scholar 

  75. Oikawa D, Tokuda M, Iwawaki T (2007) Site-specific cleavage of CD59 mRNA by endoplasmic reticulum-localized ribonuclease, IRE1. Biochem Biophys Res Commun 360(1):122–127

    Article  PubMed  CAS  Google Scholar 

  76. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186(3):323–331

    Article  PubMed  CAS  Google Scholar 

  77. Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312(5773):572–576

    Article  PubMed  CAS  Google Scholar 

  78. Henke N, Lisak DA, Schneider L, Habicht J, Pergande M, Methner A (2011) The ancient cell death suppressor BAX inhibitor-1. Cell Calcium. PMID:21663964

    Google Scholar 

  79. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847

    Article  PubMed  CAS  Google Scholar 

  80. Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172(3):383–393

    Article  PubMed  CAS  Google Scholar 

  81. Katiyar S, Joshi S, Lennarz WJ (2005) The retrotranslocation protein Derlin-1 binds peptide:N-glycanase to the endoplasmic reticulum. Mol Biol Cell 16(10):4584–4594

    Article  PubMed  CAS  Google Scholar 

  82. Ballar P, Pabuccuoglu A, Kose FA (2011) Different p97/VCP complexes function in retrotranslocation step of mammalian ER-associated degradation (ERAD). Int J Biochem Cell Biol 43(4):613–621

    Article  PubMed  CAS  Google Scholar 

  83. Jarosch E, Lenk U, Sommer T (2003) Endoplasmic reticulum-associated protein degradation. Int Rev Cytol 223:39–81

    Article  PubMed  CAS  Google Scholar 

  84. McCracken AA, Brodsky JL (2005) Recognition and delivery of ERAD substrates to the proteasome and alternative paths for cell survival. Curr Top Microbiol Immunol 300:17–40

    Article  PubMed  CAS  Google Scholar 

  85. Tsai YC, Weissman AM (2010) The Unfolded Protein Response, Degradation from Endoplasmic Reticulum and Cancer. Genes Cancer 1(7):764–778

    Article  PubMed  CAS  Google Scholar 

  86. Morito D, Hirao K, Oda Y, Hosokawa N, Tokunaga F, Cyr DM, Tanaka K, Iwai K, Nagata K (2008) Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell 19(4):1328–1336

    Article  PubMed  CAS  Google Scholar 

  87. Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C, Weissman AM (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 13(12):1504–1509

    Article  PubMed  CAS  Google Scholar 

  88. Bromberg KD, Kluger HM, Delaunay A, Abbas S, DiVito KA, Krajewski S, Ronai Z (2007) Increased expression of the E3 ubiquitin ligase RNF5 is associated with decreased survival in breast cancer. Cancer Res 67(17):8172–8179

    Article  PubMed  CAS  Google Scholar 

  89. Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, Trapasso F, Drusco A, Shimizu M, Masciullo V, D’Andrilli G, Scambia G, Picchio MC, Alder H, Godwin AK, Croce CM (2003) Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A 100(10):5956–5961

    Article  PubMed  CAS  Google Scholar 

  90. The Cancer Genome Atlas (TCGA) Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Google Scholar 

  91. Denison SR, Wang F, Becker NA, Schüle B, Kock N, Phillips LA, Klein C, Smith DI (2003) Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene 22(51):8370–8378

    Article  PubMed  CAS  Google Scholar 

  92. Fujiwara M, Marusawa H, Wang HQ, Iwai A, Ikeuchi K, Imai Y, Kataoka A, Nukina N, Takahashi R, Chiba T (2008) Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27(46):6002–6011

    Article  PubMed  CAS  Google Scholar 

  93. Wang F, Denison S, Lai JP, Philips LA, Montoya D, Kock N, Schüle B, Klein C, Shridhar V, Roberts LR, Smith DI (2004) Parkin gene alterations in hepatocellular carcinoma. Genes Chromosomes Cancer 40(2):85–96

    Article  PubMed  CAS  Google Scholar 

  94. Yamamoto S, Tomita Y, Nakamori S, Hoshida Y, Nagano H, Dono K, Umeshita K, Sakon M, Monden M, Aozasa K (2003) Elevated expression of valosin-containing protein (p97) in hepatocellular carcinoma is correlated with increased incidence of tumor recurrence. J Clin Oncol 21(3):447–452

    Article  PubMed  CAS  Google Scholar 

  95. Picchio MC, Martin ES, Cesari R, Calin GA, Yendamuri S, Kuroki T, Pentimalli F, Sarti M, Yoder K, Kaiser LR, Fishel R, Croce CM (2004) Alterations of the tumor suppressor gene Parkin in non-small cell lung cancer. Clin Cancer Res 10(8):2720–2724

    Article  PubMed  CAS  Google Scholar 

  96. Yamamoto S, Tomita Y, Nakamori S, Hoshida Y, Nagano H, Dono K, Umeshita K, Sakon M, Monden M, Aozasa K (2003) Elevated expression of valosin-containing protein (p97) in hepatocellular carcinoma is correlated with increased incidence of tumor recurrence. J Clin Oncol 21(3):447–452

    Article  PubMed  CAS  Google Scholar 

  97. Wang Q, Shinkre BA, Lee JG, Weniger MA, Liu Y, Chen W, Wiestner A, Trenkle WC, Ye Y (2010) The ERAD inhibitor Eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. PLoS One 5(11):e15479

    Article  PubMed  CAS  Google Scholar 

  98. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 76(5):2420–2424

    Article  PubMed  CAS  Google Scholar 

  99. Wang B, Xiao Z, Ren EC (2009) Redefining the p53 response element. Proc Natl Acad Sci U S A 106(34):14373–14378

    Article  PubMed  CAS  Google Scholar 

  100. Goldstein I, Marcel V, Olivier M, Oren M, Rotter V, Hainaut P (2011) Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther 18(1):2–11

    Article  PubMed  CAS  Google Scholar 

  101. Mahmoudi S, Henriksson S, Corcoran M, Méndez-Vidal C, Wiman KG, Farnebo M (2009) Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 33(4):462–471

    Article  PubMed  CAS  Google Scholar 

  102. Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, Nagashima M, Takenoshita S, Yokota J, Harris CC (2008) Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res 68(9):3193–3203

    Article  PubMed  CAS  Google Scholar 

  103. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604

    Article  PubMed  CAS  Google Scholar 

  104. Michael D, Oren M (2002) The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12(1):53–59

    Article  PubMed  CAS  Google Scholar 

  105. Qu L., Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, Koumenis C, Taya Y, Yoshimura A, Koromilas AE (2004) Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev 18(3):261–277

    Article  PubMed  CAS  Google Scholar 

  106. Wahl GM, Carr AM (2001) The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3(12):E277–E286

    Article  PubMed  CAS  Google Scholar 

  107. Yamasaki S, Yagishita N, Nishioka K, Nakajima T (2007) The roles of synoviolin in crosstalk between endoplasmic reticulum stress-induced apoptosis and p53 pathway. Cell Cycle 6(11):1319–1323

    Article  PubMed  CAS  Google Scholar 

  108. Baltzis D, Pluquet O, Papadakis AI, Kazemi S, Qu LK, Koromilas AE (2005) The eIF2alpha kinases PERK and PKR activate glycogen synthase kinase 3 to promote the proteasomal degradation of p53. J Biol Chem 282(43):31675–31687

    Article  CAS  Google Scholar 

  109. Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281(11):7260–7270

    Google Scholar 

  110. Wouters BG, Van Den Beucken T, Magagnin MG, Koritzinsky M, Fels D, Koumenis C (2005) Control of the hypoxic response through regulation of mRNA translation. Semin Cell Dev Biol 16(4–5):487–501

    Google Scholar 

  111. Brzezianska E, Pastuszak-Lewandoska D (2011) A minireview: the role of MAPK/ERK and PI3 K/Akt pathways in thyroid follicular cell-derived neoplasm. Front Biosci 16:422–439

    Article  PubMed  CAS  Google Scholar 

  112. Jiang BH, Liu LZ (2009) PI3 K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  PubMed  CAS  Google Scholar 

  113. Blanco-Aparicio C, Renner O, Leal JF, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28(7):1379–1386

    Article  PubMed  CAS  Google Scholar 

  114. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3 K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004

    Article  PubMed  CAS  Google Scholar 

  115. Adjei AA, Hidalgo M (2005) Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol 23(23):5386–5403

    Article  PubMed  CAS  Google Scholar 

  116. Shinohara M, Chung YJ, Saji M, Ringel MD (2007) AKT in thyroid tumorigenesis and progression. Endocrinology 148(3):942–947

    Article  PubMed  CAS  Google Scholar 

  117. Zhao L, Vogt PK (2008) Class I PI3 K in oncogenic cellular transformation. Oncogene 27(41):5486–5496

    Article  PubMed  CAS  Google Scholar 

  118. Nakayama K, Nakayama N, Kurman RJ, Cope L, Pohl G, Samuels Y, Velculescu VE, Wang TL, Shih Ie.M (2006) Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol Ther 5(7):779–785

    Google Scholar 

  119. Iamaroon A, Krisanaprakornkit S (2009) Overexpression and activation of Akt2 protein in oral squamous cell carcinoma. Oral Oncol 45(10):e175–e179

    Google Scholar 

  120. Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T, Nagahiro S (2010) Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol 12(3):221–232

    Google Scholar 

  121. Samuels Y, Diaz LA Jr., Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573

    Article  PubMed  CAS  Google Scholar 

  122. Abbott RT, Tripp S, Perkins SL, Elenitoba-Johnson KS, Lim MS (2003) Analysis of the PI-3-Kinase-PTEN-AKT pathway in human lymphoma and leukemia using a cell line microarray. Mod Pathol 16(6):607–612

    Article  PubMed  Google Scholar 

  123. Terakawa N, Kanamori Y, Yoshida S (2003) Loss of PTEN expression followed by Akt phosphorylation is a poor prognostic factor for patients with endometrial cancer. Endocr Relat Cancer 10(2):203–208

    Article  PubMed  CAS  Google Scholar 

  124. Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22(14):2954–2963

    Article  PubMed  CAS  Google Scholar 

  125. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83

    Article  PubMed  CAS  Google Scholar 

  126. Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429(3):403–417

    Article  PubMed  CAS  Google Scholar 

  127. Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC (2010) c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochim Biophys Acta 1804(3):463–475

    Article  PubMed  CAS  Google Scholar 

  128. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112

    Article  PubMed  CAS  Google Scholar 

  129. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158

    Article  PubMed  CAS  Google Scholar 

  130. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr., Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  PubMed  CAS  Google Scholar 

  131. Koong AC, Chauhan V, Romero-Ramirez L (2006) Targeting XBP-1 as a novel anti-cancer strategy. Cancer Biol Ther. 5(7):756–759

    Article  PubMed  CAS  Google Scholar 

  132. Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, Scott A, Orkin SH, Byrne MC, Grusby MJ, Glimcher LH (2000) An essential role in liver development for transcription factor XBP-1. Genes Dev 14(2):152–157

    PubMed  CAS  Google Scholar 

  133. Hess DA, Humphrey SE, Ishibashi J, Damsz B, Lee AH, Glimcher LH, Konieczny SF (2011) Extensive Pancreas Regeneration Following Acinar-Specific Disruption of Xbp1 in Mice. Gastroenterology 141(4):1463–1472

    Article  PubMed  CAS  Google Scholar 

  134. Iwakoshi NN, Lee AH, Glimcher LH (2003) The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol Rev 194:29–38

    Article  PubMed  CAS  Google Scholar 

  135. Brewer JW, Hendershot LM (2005) Building an antibody factory: a job for the unfolded protein response. Nat Immunol 6(1):23–29

    Article  PubMed  CAS  Google Scholar 

  136. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, Yu X, Yang L, Tan BK, Rosenwald A, Hurt EM, Petroulakis E, Sonenberg N, Yewdell JW, Calame K, Glimcher LH, Staudt LM (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21(1):81–93

    Article  PubMed  CAS  Google Scholar 

  137. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC (2004) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64(17):5943–5947

    Article  PubMed  CAS  Google Scholar 

  138. Spiotto MT, Banh A, Papandreou I, Cao H, Galvez MG, Gurtner GC, Denko NC, Le QT, Koong AC (2010) Imaging the unfolded protein response in primary tumors reveals microenvironments with metabolic variations that predict tumor growth. Cancer Res 70(1):78–88

    Article  PubMed  CAS  Google Scholar 

  139. Fujimoto T, Onda M, Nagai H, Nagahata T, Ogawa K, Emi M (2003) Upregulation and overexpression of human X-box binding protein 1 (hXBP-1) gene in primary breast cancers. Breast Cancer 10(4):301–306

    Article  PubMed  Google Scholar 

  140. Feldman DE, Chauhan V, Koong AC (2005) The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 3(11):597–605

    Article  PubMed  CAS  Google Scholar 

  141. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, Solow-Cordero DE, Bouley DM, Offner F, Niwa M, Koong AC (2011) Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117(4):1311–1314

    Article  PubMed  CAS  Google Scholar 

  142. Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M (2007) IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res 67(14):6700–6707

    Article  PubMed  CAS  Google Scholar 

  143. Romero-Ramirez L, Cao H, Regalado MP, Kambham N, Siemann D, Kim JJ, Le QT, Koong AC (2009) X box-binding protein 1 regulates angiogenesis in human pancreatic adenocarcinomas. Transl Oncol 2(1):31–38

    PubMed  Google Scholar 

  144. Nagaraju GP, Sharma D (2011) Anti-cancer role of SPARC, an inhibitor of adipogenesis. Cancer Treat Rev 37(7):559–566

    Article  PubMed  CAS  Google Scholar 

  145. McConnell BB, Vertino PM (2004) TMS1/ASC: the cancer connection. Apoptosis 9(1):5–18

    Article  PubMed  CAS  Google Scholar 

  146. Grzmil M, Thelen P, Hemmerlein B, Schweyer S, Voigt S, Mury D, Burfeind P (2003). Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells. Am J Pathol 163(2):543–552

    Google Scholar 

  147. Grzmil M, Kaulfuss S, Thelen P, Hemmerlein B, Schweyer S, Obenauer S, Kang TW, Burfeind P (2006) Expression and functional analysis of Bax inhibitor-1 in human breast cancer cells. J Pathol 208(3):340–349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chevet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lhomond, S., Chevet, E. (2012). Signaling the Unfolded Protein Response in cancer. In: Agostinis, P., Afshin, S. (eds) Endoplasmic Reticulum Stress in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4351-9_16

Download citation

Publish with us

Policies and ethics