Skip to main content

Biology of the Endoplasmic Reticulum

  • Chapter
  • First Online:
Book cover Endoplasmic Reticulum Stress in Health and Disease

Abstract

Since its discovery in 1945, our knowledge of the structure and many functions of the endoplasmic reticulum (ER) has advanced at a phenomenal rate. Early studies focused on the structure, which was then followed by biochemical and functional studies associated with calcium storage and release from the ER, protein folding and secretion, ER associated degradation (ERAD) and ER stress responses. Currently there is a significant interest in the role of ER in such cellular processes as cell death, autophagy and cross-talk with other organelles. In this chapter we give an overview of the structural characteristics and biochemical functioning of the ER and describe its manifold roles in cellular physiology. Finally, we explain how the sensitive nature of the protein folding process in the ER enables this organelle to act as a sensor of a broad range of cellular stresses. Signals emanating from the stressed ER play central roles in differentiation processes, cellular homeostasis and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATF:

Activating transcription factor

CNX:

Calnexin

COPII:

Coat protein II

CRT:

Calreticulin

CYP:

Cytochrome p-450

ER:

Endoplasmic reticulum

ERAD:

ER associated degradation

ERAF:

ER associated folding

GRP:

Glucose regulated protein

GSH:

Glutathione

HSP:

Heat shock protein

IP3R:

Inositol trisphosphate receptor

IRE1:

Inositol-requiring enzyme 1

PDI:

Protein disulfide isomerase

PERK:

Pancreatic ER kinase-like ER kinase

PM:

Plasma membrane

PPIs:

Peptidyl-prolyl cis-trans isomerase

RER:

Rough ER

RYR:

Ryanodine receptor

SER:

Smooth ER

SERCA:

Sarco-endoplasmic reticulum activated Ca2+pump

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SR:

Sarcoplasmic reticulum

SREBPs:

Sterol regulatory element binding proteins

TAC:

Tip attachment complex

tER:

Transitional ER

UGGT:

UDP-Glc:glycoprotein glucosyltransferase

UGT:

UDP-glucuronyl transferase

UPR:

Unfolded protein response

References

  1. Porter KR, Claude A, Fullam EF (1945) A Study of Tissue Culture Cells by Electron Microscopy: Methods and Preliminary Observations. J Exp Med 81 (3):233–246

    Article  PubMed  CAS  Google Scholar 

  2. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3 (10):944–950. doi: 10.1093/embo-reports/kvf202, 3/10/944 [pii]

    Article  PubMed  CAS  Google Scholar 

  3. Park SH, Blackstone C (2010) Further assembly required: construction and dynamics of the endoplasmic reticulum network. EMBO Rep 11 (7):515–521. doi: embor201092 [pii], 10.1038/embor.2010.92

    Article  PubMed  CAS  Google Scholar 

  4. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA (2010) Mechanisms determining the morphology of the peripheral ER. Cell 143 (5):774–788. doi: S0092–8674(10)01251–1 [pii], 10.1016/j.cell.2010.11.007

    Article  PubMed  CAS  Google Scholar 

  5. Chen X, Karnovsky A, Sans MD, Andrews PC, Williams JA (2010) Molecular characterization of the endoplasmic reticulum: insights from proteomic studies. Proteomics 10 (22):4040–4052. doi: 10.1002/pmic.201000234

    Article  PubMed  CAS  Google Scholar 

  6. Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJ, Hallett M, Paiement J, Kearney RE, Nilsson T, Bergeron JJ (2006) Quantitative proteomics analysis of the secretory pathway. Cell 127 (6):1265–1281. doi: S0092–8674(06)01426–7 [pii], 10.1016/j.cell.2006.10.036

    Article  PubMed  CAS  Google Scholar 

  7. Kreibich G, Ulrich BL, Sabatini DD (1978) Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristics of rough microsomes. J Cell Biol 77 (2):464–487

    Article  PubMed  CAS  Google Scholar 

  8. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7 (1):9–19. doi: nrm1784 [pii], 10.1038/nrm1784

    Article  PubMed  CAS  Google Scholar 

  9. Shibata Y, Hu J, Kozlov MM, Rapoport TA (2009) Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25 329–354. doi: 10.1146/annurev.cellbio.042308.113324

    Article  PubMed  CAS  Google Scholar 

  10. Rismanchi N, Soderblom C, Stadler J, Zhu PP, Blackstone C (2008) Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum Mol Genet 17 (11):1591–1604. doi: ddn046 [pii], 10.1093/hmg/ddn046

    Google Scholar 

  11. Lu L, Ladinsky MS, Kirchhausen T (2009) Cisternal organization of the endoplasmic reticulum during mitosis. Mol Biol Cell 20 (15):3471–3480. doi: E09–04-0327 [pii], 10.1091/mbc.E09–04-0327

    Google Scholar 

  12. English AR, Zurek N, Voeltz GK (2009) Peripheral ER structure and function. Curr Opin Cell Biol 21 (4):596–602. doi: S0955–0674(09)00090–8 [pii], 10.1016/j.ceb.2009.04.004

    Article  PubMed  CAS  Google Scholar 

  13. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325 (5939):477–481. doi: 1175088 [pii], 10.1126/science.1175088

    Article  PubMed  CAS  Google Scholar 

  14. Sleight RG, Pagano RE (1983) Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J Biol Chem 258 (15):9050–9058

    PubMed  CAS  Google Scholar 

  15. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2 + store depletion. Proc Natl Acad Sci U S A 104 (22):9301–9306. doi: 0702866104 [pii], 10.1073/pnas.0702866104

    Article  PubMed  CAS  Google Scholar 

  16. Johnson AE, van Waes MA (1999) The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 15 799–842. doi: 10.1146/annurev.cellbio.15.1.799

    Article  PubMed  Google Scholar 

  17. Osborne AR, Rapoport TA, Van Den Berg B (2005) Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol 21 529–550. doi: 10.1146/annurev.cellbio.21.012704.133214

    Article  PubMed  CAS  Google Scholar 

  18. van Anken E, Braakman I (2005) Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 40 (4):191–228. doi: W22V8337800PH27 J [pii], 10.1080/10409230591008161

    Article  PubMed  CAS  Google Scholar 

  19. Moremen KW, Molinari M (2006) N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol 16 (5):592–599. doi: S0959–440X(06)00140–0 [pii], 10.1016/j.sbi.2006.08.005

    Article  PubMed  CAS  Google Scholar 

  20. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426 (6968):891–894. doi: 10.1038/nature02262, nature02262 [pii]

    Article  PubMed  CAS  Google Scholar 

  21. Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81 (3):425–433. doi: 0092–8674(95)90395-X [pii]

    Article  PubMed  CAS  Google Scholar 

  22. Argon Y, Simen BB (1999) GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol 10 (5):495–505. doi: S1084–9521(99)90320–8 [pii], 10.1006/scdb.1999.0320

    Article  PubMed  CAS  Google Scholar 

  23. Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26 (8):504–510. doi: S0968–0004(01)01908–9 [pii]

    Article  PubMed  CAS  Google Scholar 

  24. Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353 (6346):726–730. doi: 10.1038/353726a0

    Article  PubMed  CAS  Google Scholar 

  25. Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28 (1–2):51–65. doi: 10.1016/j.jchemneu.2003.08.007, S0891061804000031 [pii]

    Article  PubMed  CAS  Google Scholar 

  26. Chung KT, Shen Y, Hendershot LM (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 277 (49):47557–47563. doi: 10.1074/jbc.M208377200, M208377200 [pii]

    Article  PubMed  CAS  Google Scholar 

  27. Hendershot L, Wei J, Gaut J, Melnick J, Aviel S, Argon Y (1996) Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants. Proc Natl Acad Sci U S A 93 (11):5269–5274

    Article  PubMed  CAS  Google Scholar 

  28. Matlack KE, Misselwitz B, Plath K, Rapoport TA (1999) BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 97 (5):553–564. doi: S0092–8674(00)80767–9 [pii]

    Article  PubMed  CAS  Google Scholar 

  29. Otero JH, Lizak B, Hendershot LM (2010) Life and death of a BiP substrate. Semin Cell Dev Biol 21 (5):472–478. doi: S1084–9521(09)00253–5 [pii], 10.1016/j.semcdb.2009.12.008

    Article  PubMed  CAS  Google Scholar 

  30. Maattanen P, Gehring K, Bergeron JJ, Thomas DY (2010) Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol 21 (5):500–511. doi: S1084–9521(10)00068–6 [pii], 10.1016/j.semcdb.2010.03.006

    Article  PubMed  Google Scholar 

  31. Braakman I, Helenius J, Helenius A (1992) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. Embo J 11 (5):1717–1722

    PubMed  CAS  Google Scholar 

  32. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164 (3):341–346. doi: 10.1083/jcb.200311055, jcb.200311055 [pii]

    Article  PubMed  CAS  Google Scholar 

  33. Jessop CE, Watkins RH, Simmons JJ, Tasab M, Bulleid NJ (2009) Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. J Cell Sci 122 (Pt 23):4287–4295. doi: jcs.059154 [pii], 10.1242/jcs.059154

    Article  PubMed  CAS  Google Scholar 

  34. Cai H, Wang CC, Tsou CL (1994) Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J Biol Chem 269 (40):24550–24552

    PubMed  CAS  Google Scholar 

  35. McLaughlin SH, Bulleid NJ (1998) Thiol-independent interaction of protein disulphide isomerase with type X collagen during intra-cellular folding and assembly. Biochem J 331 (Pt 3) 793–800

    PubMed  CAS  Google Scholar 

  36. Lee SO, Cho K, Cho S, Kim I, Oh C, Ahn K (2010) Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation. Embo J 29 (2):363–375. doi: emboj2009359 [pii], 10.1038/emboj.2009.359

    Article  PubMed  CAS  Google Scholar 

  37. Kozlov G, Maattanen P, Schrag JD, Hura GL, Gabrielli L, Cygler M, Thomas DY, Gehring K (2009) Structure of the noncatalytic domains and global fold of the protein disulfide isomerase ERp72. Structure 17 (5):651–659. doi: S0969–2126(09)00149-X [pii], 10.1016/j.str.2009.02.016

    Article  PubMed  CAS  Google Scholar 

  38. Jessop CE, Chakravarthi S, Garbi N, Hammerling GJ, Lovell S, Bulleid NJ (2007) ERp57 is essential for efficient folding of glycoproteins sharing common structural domains. Embo J 26 (1):28–40. doi: 7601505 [pii], 10.1038/sj.emboj.7601505

    Article  PubMed  CAS  Google Scholar 

  39. Tu BP, Weissman JS (2002) The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 10 (5):983–994. doi: S1097276502006962 [pii]

    Article  PubMed  CAS  Google Scholar 

  40. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18 (24):3066–3077

    Article  PubMed  CAS  Google Scholar 

  41. Sevier CS, Qu H, Heldman N, Gross E, Fass D, Kaiser CA (2007) Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1. Cell 129 (2):333–344. doi: S0092–8674(07)00325-X [pii], 10.1016/j.cell.2007.02.039

    Article  PubMed  CAS  Google Scholar 

  42. Jessop CE, Tavender TJ, Watkins RH, Chambers JE, Bulleid NJ (2009) Substrate specificity of the oxidoreductase ERp57 is determined primarily by its interaction with calnexin and calreticulin. J Biol Chem 284 (4):2194–2202. doi: M808054200 [pii], 10.1074/jbc.M808054200

    Google Scholar 

  43. Zapun A, Darby NJ, Tessier DC, Michalak M, Bergeron JJ, Thomas DY (1998) Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 273 (11):6009–6012

    Article  PubMed  CAS  Google Scholar 

  44. Hirsch C, Gauss R, Horn SC, Neuber O, Sommer T (2009) The ubiquitylation machinery of the endoplasmic reticulum. Nature 458 (7237):453–460. doi: nature07962 [pii], 10.1038/nature07962

    Article  PubMed  CAS  Google Scholar 

  45. Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9 (12):944–957. doi: nrm2546 [pii], 10.1038/nrm2546

    Article  PubMed  CAS  Google Scholar 

  46. Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20 87–123. doi: 10.1146/annurev.cellbio.20.010403.105307

    Article  PubMed  CAS  Google Scholar 

  47. Bagola K, Mehnert M, Jarosch E, Sommer T (2011) Protein dislocation from the ER. Biochim Biophys Acta 1808 (3):925–936. doi: S0005–2736(10)00223–3 [pii], 10.1016/j.bbamem.2010.06.025

    Article  PubMed  CAS  Google Scholar 

  48. Scott DC, Schekman R (2008) Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins. J Cell Biol 181 (7):1095–1105. doi: jcb.200804053 [pii], 10.1083/jcb.200804053

    Article  PubMed  CAS  Google Scholar 

  49. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429 (6994):834–840. doi: 10.1038/nature02592, nature02592 [pii]

    Article  PubMed  CAS  Google Scholar 

  50. Jentsch S, Rumpf S (2007) Cdc48 (p97): a “molecular gearbox” in the ubiquitin pathway? Trends Biochem Sci 32 (1):6–11. doi: S0968–0004(06)00322–7 [pii], 10.1016/j.tibs.2006.11.005

    Article  PubMed  CAS  Google Scholar 

  51. Klumperman J (2000) Transport between ER and Golgi. Curr Opin Cell Biol 12 (4):445–449. doi: S0955–0674(00)00115–0 [pii]

    Article  PubMed  CAS  Google Scholar 

  52. Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77 (6):895–907. doi: 0092–8674(94)90138–4 [pii]

    Article  PubMed  CAS  Google Scholar 

  53. Appenzeller-Herzog C, Hauri HP (2006) The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 119 (Pt 11):2173–2183. doi: 119/11/2173 [pii], 10.1242/jcs.03019

    Article  PubMed  CAS  Google Scholar 

  54. Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32 (5–6):235–249. doi: S0143416002001823 [pii]

    Article  PubMed  CAS  Google Scholar 

  55. Michalak M, Robert Parker JM, Opas M (2002) Ca2+signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32 (5–6):269–278. doi: S0143416002001884 [pii]

    Article  PubMed  CAS  Google Scholar 

  56. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4 (7):517–529. doi: 10.1038/nrm1155 [pii]

    Article  PubMed  CAS  Google Scholar 

  57. Cribb AE, Peyrou M, Muruganandan S, Schneider L (2005) The endoplasmic reticulum in xenobiotic toxicity. Drug Metab Rev 37 (3):405–442. doi: V55U40395RU7671 M [pii], 10.1080/03602530500205135

    Article  PubMed  CAS  Google Scholar 

  58. Murray GI, Barnes TS, Sewell HF, Ewen SW, Melvin WT, Burke MD (1988) The immunocytochemical localisation and distribution of cytochrome P-450 in normal human hepatic and extrahepatic tissues with a monoclonal antibody to human cytochrome P-450. Br J Clin Pharmacol 25 (4):465–475

    Article  PubMed  CAS  Google Scholar 

  59. Gonzalez FJ (1992) Human cytochromes P450: problems and prospects. Trends Pharmacol Sci 13 (9):346–352

    Article  PubMed  CAS  Google Scholar 

  60. Gonzalez FJ, Gelboin HV (1994) Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev 26 (1–2):165–183. doi: 10.3109/03602539409029789

    Article  PubMed  CAS  Google Scholar 

  61. Cashman JR (1995) Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem Res Toxicol 8 (2):166–181

    Article  PubMed  CAS  Google Scholar 

  62. Skoda RC, Demierre A, McBride OW, Gonzalez FJ, Meyer UA (1988) Human microsomal xenobiotic epoxide hydrolase. Complementary DNA sequence, complementary DNA-directed expression in COS-1 cells, and chromosomal localization. J Biol Chem 263 (3):1549–1554

    PubMed  CAS  Google Scholar 

  63. de Waziers I, Cugnenc PH, Yang CS, Leroux JP, Beaune PH (1990) Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther 253 (1):387–394

    PubMed  CAS  Google Scholar 

  64. Satoh T, Hosokawa M (1998) The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 38 257–288. doi: 10.1146/annurev.pharmtox.38.1.257

    Article  PubMed  CAS  Google Scholar 

  65. Radominska-Pandya A, Czernik PJ, Little JM, Battaglia E, Mackenzie PI (1999) Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev 31 (4):817–899. doi: 10.1081/DMR-100101944

    Article  PubMed  CAS  Google Scholar 

  66. Morgenstern R, Lundqvist G, Andersson G, Balk L, DePierre JW (1984) The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms. Biochem Pharmacol 33 (22):3609–3614. doi: 0006–2952(84)90145-X [pii]

    Article  PubMed  CAS  Google Scholar 

  67. Jakobsson PJ, Mancini JA, Riendeau D, Ford-Hutchinson AW (1997) Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J Biol Chem 272 (36):22934–22939

    Article  PubMed  CAS  Google Scholar 

  68. Johansson I, Ingelman-Sundberg M (2011) Genetic polymorphism and toxicology--with emphasis on cytochrome p450. Toxicol Sci 120 (1):1–13. doi: kfq374 [pii], 10.1093/toxsci/kfq374

    Article  PubMed  CAS  Google Scholar 

  69. Leskes A, Siekevitz P, Palade GE (1971) Differentiation of Endoplasmic Reticulum in Hepatocytes: I. Glucose-6-Phosphatase Distribution In Situ. J Cell Biol 49 (2):264–287

    Article  PubMed  CAS  Google Scholar 

  70. Hems DA, Whitton PD (1980) Control of hepatic glycogenolysis. Physiol Rev 60 (1):1–50

    PubMed  CAS  Google Scholar 

  71. van Schaftingen E, Gerin I (2002) The glucose-6-phosphatase system. Biochem J 362 (Pt 3):513–532

    Article  PubMed  CAS  Google Scholar 

  72. Fagone P, Jackowski S (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res Suppl 50 S 311–316 doi: R800049-JLR200 [pii], 10.1194/jlr.R800049-JLR200

    Google Scholar 

  73. Balasubramaniam S, Mitropoulos KA, Venkatesan S, Myant NB, Peters TJ, Postiglione A, Mancini M (1981) Analytical fractionation of human liver microsomal fractions: localization of cholesterol and of the enzymes relevant to its metabolism. Clin Sci (Lond) 60 (4):435–439

    CAS  Google Scholar 

  74. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109 (9):1125–1131. doi: 10.1172/JCI15593

    PubMed  CAS  Google Scholar 

  75. Colgan SM, Hashimi AA, Austin RC (2011) Endoplasmic reticulum stress and lipid dysregulation. Expert Rev Mol Med 13 e4. doi: S1462399410001742 [pii], 10.1017/S1462399410001742

    Google Scholar 

  76. Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23

    Article  PubMed  CAS  Google Scholar 

  77. Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR, Hotamisligil GS (2011) Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473 (7348):528–531. doi: nature09968 [pii] 10.1038/nature09968

    Article  PubMed  CAS  Google Scholar 

  78. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789 doi: 10.1146/annurev.biochem.73.011303.074134

    Article  PubMed  Google Scholar 

  79. Price BD, Mannheim-Rodman LA, Calderwood SK (1992) Brefeldin A, thapsigargin, and AIF4- stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. J Cell Physiol 152 (3):545–552 doi: 10.1002/jcp.1041520314

    Article  PubMed  CAS  Google Scholar 

  80. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107 (12):4907–4916. doi: 2005–08-3531 [pii], 10.1182/blood-2005–08-3531

    Google Scholar 

  81. Turnbull EL, Rosser MF, Cyr DM (2007) The role of the UPS in cystic fibrosis. BMC Biochem 8 Suppl1:S 11. doi: 1471–2091-8-S1-S11 [pii], 10.1186/1471–2091-8-S1-S11

    Google Scholar 

  82. Carrell RW (2005) Cell toxicity and conformational disease. Trends Cell Biol 15 (11):574–580. doi: S0962–8924(05)00229–1 [pii], 10.1016/j.tcb.2005.09.005

    Article  PubMed  CAS  Google Scholar 

  83. Granell S, Baldini G, Mohammad S, Nicolin V, Narducci P, Storrie B (2008) Sequestration of mutated alpha1-antitrypsin into inclusion bodies is a cell-protective mechanism to maintain endoplasmic reticulum function. Mol Biol Cell 19 (2):572–586. doi: E07–06-0587 [pii], 10.1091/mbc.E07–06-0587

    Article  PubMed  CAS  Google Scholar 

  84. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Reports 7 (9):880–885. doi: 7400779 [pii], 10.1038/sj.embor.7400779

    Google Scholar 

  85. Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, Gannon M, Ma K, McNaughton K, Cavener DR (2002) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22 (11):3864–3874

    Article  PubMed  CAS  Google Scholar 

  86. Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, Romero M, Cavener DR, Thompson CB, Diehl JA (2008) PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci U S A 105 (42):16314–16319. doi: 0808517105 [pii], 10.1073/pnas.0808517105

    Article  PubMed  CAS  Google Scholar 

  87. Iwawaki T, Akai R, Kohno K (2010) IRE1alpha disruption causes histological abnormality of exocrine tissues, increase of blood glucose level, and decrease of serum immunoglobulin level. PLoS One 5 (9):e13052. doi: e13052 [pii], 10.1371/journal.pone.0013052

    Google Scholar 

  88. Zhang K, Wong HN, Song B, Miller CN, Scheuner D, Kaufman RJ (2005) The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis. J Clin Invest 115 (2):268–281.doi: 10.1172/JCI21848

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Agostinis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Healy, S.J., Verfaillie, T., Jäger, R., Agostinis, P., Samali, A. (2012). Biology of the Endoplasmic Reticulum. In: Agostinis, P., Afshin, S. (eds) Endoplasmic Reticulum Stress in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4351-9_1

Download citation

Publish with us

Policies and ethics