Skip to main content

Laboratory Experiments on the Microphysics of Electrified Cloud Droplets

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

The global electric circuit (GEC) is one of the candidates for a coupling of terrestrial climate with solar activity [Friis-Christensen, in Space Sci. Rev. 94(1–2): 411–421, 2000]. It has been suggested that vertical electric currents in the atmosphere can modify cloud microphysics and thereby alter the properties of the earth’s cloud system [Tinsley, in Space Sci. Rev. 98:16889–16891, 2000]. In the framework of the Deutsche Forschungsgemeinschaft (DFG) priority program CAWSES we conducted laboratory experiments which quantify the influence of electric charges on the microphysics of cloud droplets in order to assess the atmospheric relevance of this link between the GEC and the cloud system. More specific, we quantify the influence of charges, electric fields and ionizing radiation on the heterogeneous and homogeneous nucleation in cloud droplets. These experiments were carried out on individual electrified cloud droplets using an electrodynamic balance enclosed by a miniaturized climate chamber to provide realistic atmospheric conditions. Several effects that could link the electrical state of the atmosphere to cloud microphysics have been investigated and quantified. While no direct effect of cloud droplet charge on homogeneous freezing was found, we were able to confirm and quantify the enhanced scavenging of aerosol particles by charged cloud droplets. Together with the first direct measurement of size dependent contact freezing probabilities it is now possible to quantify the role of charges for cloud glaciation in cloud models. Additionally, a substantial effect of cloud droplet and ice charge on the vapor pressure of these cloud elements has been found that has so far not been taken into account in cloud modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, M. A., & Latham, J. (1969). The electrofreezing of supercooled water drops. Journal of the Meteorological Society of Japan, 47, 65–74.

    Google Scholar 

  • Achtzehn, T., Müller, R., Duft, D., & Leisner, T. (2005). The coulomb instability of charged microdroplets: dynamics and scaling. The European Physical Journal. D, Atomic, Molecular and Optical Physics, 34, 311–313.

    Google Scholar 

  • Bazilevskaya, G. (2000). Observations of variability in cosmic rays. Space Science Reviews, 94, 25–38. doi:10.1023/A:1026721912992.

    Article  Google Scholar 

  • Benz, S., Megahed, K., Möhler, O., Saathoff, H., Wagner, R., & Schurath, U. (2005). T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber. Journal of Photochemistry and Photobiology. A, Chemistry, 176, 208–217.

    Article  Google Scholar 

  • Bohren, C. F., & Huffman, D. R. (2004). Absorption and scattering of light by small particles. Weinheim: Wiley-VCH.

    Google Scholar 

  • Bourdeau, C., & Chauzy, S. (1989). Maximum electric charge of a hydrometeor in the electric field of a thundercloud. Journal of Geophysical Research, 94, 13121–13126. doi:10.1029/JD094iD11p13121.

    Article  Google Scholar 

  • Carslaw, K. S., Harrison, R. G., & Kirkby, J. (2002). Cosmic rays, clouds, and climate. Science, 298(5599), 1732–1737. doi:10.1126/science.1076964.

    Article  Google Scholar 

  • Chaboureau, J.-P., Cammas, J.-P., Duron, J., Mascart, P. J., Sitnikov, N. M., & Voessing, H.-J. (2007). A numerical study of tropical cross-tropopause transport by convective overshoots. Atmospheric Chemistry and Physics, 7(7), 1740.

    Article  Google Scholar 

  • Corti, T., Luo, B. P., de Reus, M., Brunner, D., Cairo, F., Mahoney, M. J., Martucci, G., Matthey, R., Mitev, V., dos Santos, F. H., Schiller, C., Shur, G., Sitnikov, N. M., Spelten, N., Voessing, H. J., Borrmann, S., & Peter, T. (2008). Unprecedented evidence for deep convection hydrating the tropical stratosphere. Geophysical Research Letters, 35, 10. doi:10.1029/2008GL033641.

    Article  Google Scholar 

  • Cubasch, U., Voss, R., Larkin, A., Haigh, J. D., Djavidnia, S., Marsh, N., Svensmark, H., Tinsley, B. A., van Loon, H., Labitzke, K., Arnold, N. F., Robinson, T. R., Haarsma, R. J., Drijfhout, S. S., Opsteegh, J. D., Selten, F. M., Mende, W., & Stellmacher, R. (2000). Solar variability and the Earth’s climate—chapter: Influences. Space Science Reviews, 94, 185–306.

    Article  Google Scholar 

  • Davis, E. J. (1997). A history of single particle levitation. Aerosol Science and Technology, 26, 212–254.

    Article  Google Scholar 

  • Dawson, G. A., & Cardell, G. R. (1973). Electrofreezing of supercooled waterdrops. Journal of Geophysical Research, 78, 8864–8866. doi:10.1029/JC078i036p08864.

    Article  Google Scholar 

  • de Reus, M., Borrmann, S., Bansemer, A., Heymsfield, A. J., Weigel, R., Schiller, C., Mitev, V., Frey, W., Kunkel, D., Kürten, A., Curtius, J., Sitnikov, N. M., Ulanovsky, A., & Ravegnani, F. (2009). Evidence for ice particles in the tropical stratosphere from in-situ measurements. Atmospheric Chemistry and Physics, 9(18), 6775–6792. doi:10.5194/acp-9-6775-2009.

    Article  Google Scholar 

  • DeMott, P. J., & Rogers, D. C. (1990). Freezing nucleation rates of dilute solution droplets measured between −30 °C and −40 °C in laboratory simulations of natural clouds. Journal of the Atmospheric Sciences, 47, 1056–1064.

    Article  Google Scholar 

  • Dhariwal, V., Hall, P. G., & Ray, A. K. (1993). Measurements of collection efficiency of single, charged droplets suspended in a stream of submicron particles with an electrodynamic balance. Journal of Aerosol Science, 24(2), 197–209. doi:10.1016/0021-8502(93)90058-H.

    Article  Google Scholar 

  • Dickinson, R. (1975). Solar variability and the lower atmosphere. Bulletin of the American Meteorological Society, 56, 1240.

    Article  Google Scholar 

  • Djikaev, Y. S., Tabazadeh, A., Hamill, P., & Reiss, H. (2002). Thermodynamic conditions for the surface-stimulated crystallization of atmospheric droplets. The Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, & General Theory, 106, 10247–10253.

    Article  Google Scholar 

  • Djikaev, Y. S., Tabazadeh, A., & Reiss, H. (2003). Thermodynamics of crystal nucleation in multicomponent droplets: adsorption, dissociation, and surface-stimulated nucleation. Journal of Chemical Physics, 118, 6572–6581.

    Article  Google Scholar 

  • Doolittle, J. B., & Vali, G. (1975). Heterogeneous freezing nucleation in electric fields. Journal of the Atmospheric Sciences, 32, 375–379.

    Article  Google Scholar 

  • Dufour, L. (1862). Ueber das Gefrieren des Wassers und über die Bildung des Hagels. Annalen der Physik, 190(12), 530–554. doi:10.1002/andp.18621901203.

    Article  Google Scholar 

  • Duft, D., & Leisner, T. (2004a). The index of refraction of supercooled solutions determined by the analysis of optical rainbow scattering from levitated droplets. International Journal of Mass Spectrometry, 233, 61–65.

    Article  Google Scholar 

  • Duft, D., & Leisner, T. (2004b). Laboratory evidence for volume-dominated nucleation of ice in supercooled water microdroplets. Atmospheric Chemistry and Physics, 4, 1997–2000.

    Article  Google Scholar 

  • Fischer, E. (1959). Die dreidimensionale Stabilisierung von Ladungsträgern in einem Vierpolfeld. Zeitschrift für Physik, 156(1), 1–26.

    Article  Google Scholar 

  • Fisk, L. A., Wenzel, K.-P., Balogh, A., Burger, R. A., Cummings, A. C., Evenson, P., Heber, B., Jokipii, J. R., Krainev, M. B., Kóta, J., Kunow, H., Le Roux, J. A., McDonald, F. B., McKibben, R. B., Potgieter, M. S., Simpson, J. A., Steenberg, C. D., Suess, S., Webber, W. R., Wibberenz, G., Zhang, M., Ferrando, P., Fujii, Z., Lockwood, J. A., Moraal, H., & Stone, E. C. (1998). Global processes that determine cosmic ray modulation. Space Science Reviews, 83, 179–214.

    Article  Google Scholar 

  • Friis-Christensen, E. (2000). Solar variability and climate—A summary. Space Science Reviews, 94(1–2), 411–421.

    Article  Google Scholar 

  • Friis-Christensen, E., & Lassen, K. (1991). Length of the solar cycle: an indicator of solar activity closely associated with climate. Science, 254, 698.

    Article  Google Scholar 

  • Fuchs, N. A. (1963). On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure and Applied Geophysics, 56, 185–193. doi:10.1007/BF01993343.

    Article  Google Scholar 

  • Fuchs, N. A. (1964). Mechanics of aerosols. New York: Pergamon.

    Google Scholar 

  • Gast, F. U., & Fiehn, H. (2003). Profile. The development of integrated microfluidic systems at GeSiM. Lab on a Chip, 3, 6N–10N.

    Article  Google Scholar 

  • Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., & White, W. (2010). Solar influences on climate. Reviews in Geophysics, 48. doi:10.1029/2009RG000282.

  • Herschel, W. (1796). On the method of observing the changes that happen to the fixed stars; with some remarks on the stability of the light of our sun, to which is added, a catalogue of comparative brightness, for ascertaining the permanency of the lustre of stars. Philosophical Transactions of the Royal Society of London, 86, 166–226.

    Article  Google Scholar 

  • Hoyt, D. V., & Schatten, K. H. (1997). The role of the sun in climate change. Oxford: Oxford University Press.

    Google Scholar 

  • James, T., Wales, D. J., & Rojas, J. H. (2007). Energy landscapes for water clusters in a uniform electric field. Journal of Chemical Physics, 126, 054506–054519. doi:10.1063/1.2429659.

    Article  Google Scholar 

  • Khaykin, S., Pommereau, J. P., Korshunov, L., Yushkov, V., Nielsen, J., Larsen, N., Christensen, T., Garnier, A., Lukyanov, A., & Williams, E. (2009). Hydration of the lower stratosphere by ice crystal geysers over land convective systems. Atmospheric Chemistry and Physics, 9(6), 2275–2287.

    Article  Google Scholar 

  • Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagne, S., Ickes, L., Kuerten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkila, J., Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petaja, T., Schnitzhofer, R., Seinfeld, J. H., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., & Kulmala, M. (2011). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476(7361), 429–433. doi:10.1038/nature10343.

    Article  Google Scholar 

  • Kraemer, H. F., & Johnstone, H. F. (1955). Collection of aerosol particles in presence of electrostatic fields. Industrial and Engineering Chemistry, 47(12), 2426–2434. doi:10.1021/ie50552a020.

    Article  Google Scholar 

  • Krämer, B., Schwell, M., Hübner, O., Vortisch, H., Leisner, T., Rühl, E., Baumgärtel, H., & Wösle, L. (1996). Homogeneous ice nucleation observed in single levitated micro droplets. Berichte der Bunsen-Gesellschaft für Physikalische Chemie, 100, 1911–1914.

    Article  Google Scholar 

  • Krämer, B., Hübner, O., Vortisch, H., Wöste, L., Leisner, T., Schwell, M., Rühl, E., & Baumgärtel, H. (1999). Homogeneous nucleation rates of supercooled water measured in single levitated microdroplets. Journal of Chemical Physics, 111, 6521–6527.

    Article  Google Scholar 

  • MacGorman, D. R., & Rust, W. D. (1998). The electrical nature of storms. Oxford: Oxford University Press.

    Google Scholar 

  • March, R. E., & Hughes, R. J. (1989). Quadrupole storage mass spectrometry. New York: Wiley.

    Google Scholar 

  • Marsh, N., & Svensmark, H. (2000). Cosmic rays, clouds and climate. Space Science Reviews, 94, 215–230.

    Article  Google Scholar 

  • Maybank, J., & Barthakur, N. N. (1967). Growth and destruction of ice filaments in an electric field. Nature, 216, 50–52. doi:10.1038/216050a0.

    Article  Google Scholar 

  • Murphy, D. M., & Koop, T. (2005). Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society, 131(608, Part b), 1539–1565. doi:10.1256/qj.04.94.

    Article  Google Scholar 

  • Nielsen, J. K., Larsen, N., Cairo, F., Di Donfrancesco, G., Rosen, J. M., Durry, G., Held, G., & Pommereau, J. P. (2007). Solid particles in the tropical lowest stratosphere. Atmospheric Chemistry and Physics, 7(3), 695.

    Article  Google Scholar 

  • Nielsen, J. K., Maus, C., Rzesanke, D., & Leisner, T. (2011). Charge induced stability of water droplets in subsaturated environment. Atmospheric Chemistry and Physics, 11, 2031–2037. doi:10.5194/acp-11-2031-2011.

    Article  Google Scholar 

  • Paul, W., & Steinwedel, H. (1953). Ein neues Massenspektrometer ohne Magnetfeld. Zeitschrift Für Naturforschung. A, a Journal of Physical Sciences, 8(7), 448–450.

    Google Scholar 

  • Pruppacher, H. R. (1973). Electrofreezing of supercooled water. Pure and Applied Geophysics, 104, 623–634. doi:10.1007/BF00875907.

    Article  Google Scholar 

  • Pruppacher, H. R., & Klett, J. D. (2004). Microphysics of clouds and precipitation (2nd ed.). Dordrecht: Kluwer Academic Publishers. doi:10.1007/0-306-48100-6, ebook-edition.

    Google Scholar 

  • Rau, W. (1951). Eiskeimbildung durch dielektrische Polarisation. Zeitschrift für Naturforschung Teil A, 6, 649.

    Google Scholar 

  • Salt, R. W. (1961). Effect of electrostatic field on freezing of supercooled water and insects. Science, 133(3451), 458–459. doi:10.1126/science.133.3451.458.

    Article  Google Scholar 

  • Sonett, C. P., Giampapa, M. S., & Matthews, M. S. (Eds.) (1991). The sun in time. Tuscon: University of Arizona Press.

    Google Scholar 

  • Stöckel, P., Vortisch, H., Leisner, T., & Baumgärtel, H. (2002). Homogeneous nucleation of supercooled liquid water in levitated microdroplets. Journal of Molecular Liquids, 96–97, 153–175.

    Article  Google Scholar 

  • Svishchev, I. M., & Kusalik, P. G. (1996). Electrofreezing of liquid water: A microscopic perspective. Journal of the American Chemical Society, 118(3), 649–654. doi:10.1021/ja951624l.

    Article  Google Scholar 

  • Tabazadeh, A., Djikaev, Y. S., Hamill, P., & Reiss, H. (2002a). Laboratory evidence for surface nucleation of solid polar stratospheric cloud particles. The Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, & General Theory, 106, 10238–10246.

    Article  Google Scholar 

  • Tabazadeh, A., Djikaev, Y. S., & Reiss, H. (2002b). Surface crystallization of supercooled water in clouds. Proceedings of the National Academy of Sciences of the United States of America, 99, 15873–15878.

    Article  Google Scholar 

  • Taborek, P. (1985). Nucleation in emulsified supercooled water. Physical Review. B, Condensed Matter, 32, 5902–5906.

    Article  Google Scholar 

  • Tinsley, B. A. (1993). Apparent tropospheric response to MeV-GeV particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds: reply to detwiler-comment. Journal of Geophysical Research, 98, 16889–16891.

    Article  Google Scholar 

  • Tinsley, B. A. (2000). Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics. Space Science Reviews, 94, 231–258.

    Article  Google Scholar 

  • Tinsley, B. A., & Deen, G. W. (1991). Apparent tropospheric response to MeV-GeV particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds. Journal of Geophysical Research, 96(D12), 22283–22296. doi:10.1029/91JD02473.

    Article  Google Scholar 

  • Tinsley, B. A., & Yu, F. (2004). Atmospheric ionization and clouds as links between solar activity and climate. In Geophysical monograph series: Vol. 141. Solar variability and its effects on climate (pp. 321–339), American Geophysical Union.

    Chapter  Google Scholar 

  • Tinsley, B. A., Rohrbaugh, R. P., Hei, M., & Beard, K. V. (2000). Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes. Journal of the Atmospheric Sciences, 57(13), 2118–2134.

    Article  Google Scholar 

  • Vrbka, L., & Jungwirth, P. (2006). Homogeneous freezing of water starts in the surface. Journal of Physical Chemistry. B, 110, 18126–18129.

    Article  Google Scholar 

  • Wiedensohler, A. (1988). An approximation of the bipolar charge distribution for particles in the submicron size range. Journal of the Atmospheric Sciences, 19, 387–389.

    Google Scholar 

  • Wood, S. E., Baker, M. B., & Swanson, B. D. (2002). Instrument for studies of homogeneous and heterogeneous ice nucleation in freefalling supercooled water droplets. Review of Scientific Instruments, 73, 3988–3996.

    Article  Google Scholar 

  • Wuerker, R. F., Shelton, H., & Langmuir, R. V. (1959). Electrodynamic containment of charged particles. Japanese Journal of Applied Physics, 30(3), 342–349.

    Google Scholar 

  • Zangi, R., & Mark, A. E. (2004). Electrofreezing of confined water. Journal of Chemical Physics, 120, 7123–7130. doi:10.1063/1.1687315.

    Article  Google Scholar 

  • Zimmermann, F., Weinbruch, S., Schuetz, L., Hofmann, H., Ebert, M., Kandler, K., & Worringen, A. (2008). Ice nucleation properties of the most abundant mineral dust phases. Journal of Geophysical Research, 113. doi:10.1029/2008JD010655.

Download references

Acknowledgements

The authors would like to thank Johannes Nielsen, Christopher Maus and Jens Nadolny. The work was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft—DFG) within the priority program SPP1176-CAWSES (Grant LE834/2-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Leisner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rzesanke, D., Duft, D., Leisner, T. (2013). Laboratory Experiments on the Microphysics of Electrified Cloud Droplets. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_6

Download citation

Publish with us

Policies and ethics