Skip to main content

Solar Activity, the Heliosphere, Cosmic Rays and Their Impact on the Earth’s Atmosphere

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

During recent years it became evident that the climate of the Earth is not only determined by terrestrial, in particular anthropogenic influences, but also by external parameters. An open question is still whether the solar radiation or the cosmic rays are the main agents regarding the external climate driving. An answer to this question requires quantitative modelling of all related processes. The present chapter concentrates on the modelling of the cosmic ray transport from the interstellar medium into the Earth’s atmosphere and, thus, on interstellar-terrestrial relations. After a discussion of the significance of the local interstellar spectrum of cosmic rays, first their transport in a dynamical heliosphere is considered. Second, the cosmic ray propagation within the terrestrial magnetosphere is studied in order to determine the so-called cut-off rigidities. And, third, the cosmic ray interaction with the Earth’s atmosphere is described, with an emphasis on the ionisation and the production of cosmogenic nuclides. On the basis of the suite of models being discussed in this overview further studies will be possible that should help to quantify the overall effect of cosmic rays on the Earth environment and, particularly, climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, K., Sanuki, T., et al. (2003). Measurements of proton, helium and muon spectra at small atmospheric depths with the BESS spectrometer. Physics Letters B, 564, 8–20. doi:10.1016/S0370-2693(03)00676-2.

    Article  Google Scholar 

  • Alouani-Bibi, F., Opher, M., Alexashov, D., Izmodenov, V., & Toth, G. (2011). Kinetic versus multi-fluid approach for interstellar neutrals in the heliosphere: exploration of the interstellar magnetic field effects. The Astrophysical Journal, 734, 45.

    Article  Google Scholar 

  • AMS Collaboration, Aguilar, M., Alcaraz, J., Allaby, J., Alpat, B., Ambrosi, G., Anderhub, H., Ao, L., Arefiev, A., Azzarello, P., et al. (2002). The alpha magnetic spectrometer (AMS) on the International Space Station: Part I – results from the test flight on the space shuttle. Physics Reports, 366, 331–405. doi:10.1016/S0370-1573(02)00013-3.

    Article  Google Scholar 

  • Bazilevskaya, G. A., Usoskin, I. G., Flückiger, E. O., Harrison, R. G., Desorgher, L., Bütikofer, R., Krainev, M. B., Makhmutov, V. S., Stozhkov, Y. I., Svirzhevskaya, A. K., Svirzhevsky, N. S., & Kovaltsov, G. A. (2008). Cosmic ray induced ion production in the atmosphere. Space Science Reviews, 44. doi:10.1007/s11214-008-9339-y.

  • Beer, J. (2000). Long-term indirect indices of solar variability. Space Science Reviews, 94, 53–66.

    Article  Google Scholar 

  • Boezio, M., Bonvicini, V., et al. (2003). The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment. Astroparticle Physics, 19, 583–604. doi:10.1016/S0927-6505(02)00267-0.

    Article  Google Scholar 

  • Burger, R. A., Potgieter, M. S., & Heber, B. (2000). Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: implications for the diffusion tensor. Journal of Geophysical Research, 105, 27447–27456. doi:10.1029/2000JA000153.

    Article  Google Scholar 

  • Büsching, I., Kopp, A., Pohl, M., Schlickeiser, R., Perrot, C., & Grenier, I. (2005). Cosmic-ray propagation properties for an origin in supernova remnants. The Astrophysical Journal, 619, 314–326. doi:10.1086/426537.

    Article  Google Scholar 

  • Caballero-Lopez, R. A., & Moraal, H. (2004). Limitations of the force field equation to describe cosmic ray modulation. Journal of Geophysical Research (Space Physics), 109, 1101. doi:10.1029/2003JA010098.

    Google Scholar 

  • Casolino, M., de Simone, N., & de Pascale, M. P. e. a. (2009). Cosmic ray measurements with Pamela experiment. Nuclear Physics. B, Proceedings Supplement, 190, 293–299. doi:10.1016/j.nuclphysbps.2009.03.102.

    Article  Google Scholar 

  • Clem, J. M., & Dorman, L. I. (2000). Neutron monitor response functions. Space Science Reviews, 93, 335–359 doi:10.1023/A:1026508915269.

    Article  Google Scholar 

  • Czechowski, A., Strumik, M., Grygorczuk, J., Grzedzielski, S., Ratkiewicz, R., & Scherer, K. (2010). Structure of the heliospheric current sheet from plasma convection in time-dependent heliospheric models. Astronomy & Astrophysics, 516, A17.

    Article  Google Scholar 

  • Desorgher, L. (2006). The planetocosmics code (Tech. rep.). http://cosray.unibe.ch/~laurent/planetocosmics.

  • Dorman, L. I. (2004). Cosmic rays in the Earth’s atmosphere and underground, astrophysics and space science library: Vol. 303. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Dunai, T. J. (2010). Cosmogenic nuclides. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Eidelman, S., Hayes, K. G., & Olive, K. A. e. a. (2004). Review of particle physics. Physics Letters B, 592, 1–5. doi:10.1016/j.physletb.2004.06.001.

    Article  Google Scholar 

  • Ferreira, S. E. S., & Scherer, K. (2006). Time evolution of galactic and anomalous cosmic-ray spectra in a dynamic heliosphere. The Astrophysical Journal, 642, 1256–1266. doi:10.1086/501113.

    Article  Google Scholar 

  • Ferreira, S. E. S., Potgieter, M. S., & Scherer, K. (2007). Transport and acceleration of anomalous cosmic rays in the inner heliosheath. Journal of Geophysical Research, 112, 11101.

    Article  Google Scholar 

  • Fichtner, H., Scherer, K., & Heber, B. (2006). A criterion to discriminate between solar and cosmic ray forcing of the terrestrial climate. Atmospheric Chemistry and Physics Discussion, 6, 10811–10836.

    Article  Google Scholar 

  • Fichtner, H., Scherer, K., & Heber, B. (2010). The Hale period and climate forcing. In 38th COSPAR scientific assembly (Vol. 38, p. 1772). http://adsabs.harvard.edu/abs/2010cosp...38.1722F

    Google Scholar 

  • Florinski, V., & Pogorelov, N. V. (2009). Four-dimensional transport of galactic cosmic rays in the outer heliosphere and heliosheath. The Astrophysical Journal, 701, 642–651.

    Article  Google Scholar 

  • Florinski, V., Balogh, A., Jokipii, J. R., McComas, D. J., Opher, M., Pogorelov, N. V., Richardson, J. D., Stone, E. C., & Wood, B. E. (2009). The dynamic heliosphere: outstanding issues. Report of working groups 4 and 6. Space Science Reviews, 143, 57–83.

    Article  Google Scholar 

  • Garcia-Munoz, M., Mason, G. M., & Simpson, J. A. (1975). The anomalous He-4 component in the cosmic-ray spectrum at below approximately 50 MeV per nucleon during 1972–1974. The Astrophysical Journal, 202, 265–275.

    Article  Google Scholar 

  • Geant4 Collaboration, Agostinelli, S., Allison, J., & Amako, K. e. a. (2003). Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research A, 506, 250–303.

    Article  Google Scholar 

  • Gleeson, L. J., & Axford, W. I. (1968). Solar modulation of galactic cosmic rays. The Astrophysical Journal, 154, 1011.

    Article  Google Scholar 

  • Goldhagen, P., Clem, J. M., & Wilson, J. W. (2004). The energy spectrum of cosmic ray-induced neutrons measured on an airplane over a wide range of altitude and latitude. Radiation Protection Dosimetry, 110, 387–392.

    Article  Google Scholar 

  • Haigh, J. D. (2007). The Sun and the Earth’s climate. Living Reviews in Solar Physics, 4, 2.

    Google Scholar 

  • Harrison, R. G., & Usoskin, I. (2010). Solar modulation in surface atmospheric electricity. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 176–182. doi:10.1016/j.jastp.2009.11.006.

    Article  Google Scholar 

  • Heber, B., & Potgieter, M. S. (2006). Cosmic rays at high heliolatitudes. Space Science Reviews, 127, 117–194. doi:10.1007/s11214-006-9085-y.

    Article  Google Scholar 

  • Heber, B., Kopp, A., Gieseler, J., Müller-Mellin, R., Fichtner, H., Scherer, K., Potgieter, M. S., & Ferreira, S. E. S. (2009). Modulation of galactic cosmic ray protons and electrons during an unusual solar minimum. The Astrophysical Journal, 699, 1956–1963. doi:10.1088/0004-637X/699/2/1956.

    Article  Google Scholar 

  • Herbst, K. (2011). The interaction of cosmic rays with the Earth’s magnetosphere and atmosphere – modeling the cosmic ray induced ionization and the production of cosmogenic nuclides Earth’s magnetic field and atmosphere. Dissertation, Universität Kiel, in progress.

    Google Scholar 

  • Herbst, K., Kopp, A., Heber, B., Steinhilber, F., Fichtner, H., Scherer, K., & Matthiä, D. (2010). On the importance of the local interstellar spectrum for the solar modulation parameter. Journal of Geophysical Research (Space Physics), 115(A14), D00I20. doi:10.1029/2009JD012557.

    Google Scholar 

  • Herbst, K., Kopp, A., & Heber, B. (2011). On the influence of the geomagnetic field geometry on the propagation of charged energetic particles. AGU Fall Meeting Abstracts, Dec, A6. http://adsabs.harvard.edu/abs/2011AGUFMSM12A..06H

    Google Scholar 

  • IPCC (Ed.) (2007). Intergovernmental panel on climate change: 2007, climate change 2007: Working group I report “The physical science basis”. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kremer, J., Boezio, M., & Ambriola, M. L. e. a. (1999). Measurements of ground-level muons at two geomagnetic locations. Physical Review Letters, 83, 4241–4244.

    Article  Google Scholar 

  • Lallement, R., Quémerais, E., Koutroumpa, D., Bertaux, J.-L., Ferron, S., Schmidt, W., & Lamy, P. (2010). The interstellar H flow: updated analysis of SOHO/SWAN data. Twelfth International Solar Wind Conference, 1216, 555–558.

    Google Scholar 

  • Langner, U. W., Potgieter, M. S., & Webber, W. R. (2003). Modulation of cosmic ray protons in the heliosheath. Journal of Geophysical Research (Space Physics), 108, 14. doi:10.1029/2003JA009934.

    Google Scholar 

  • Langner, U. W., Potgieter, M. S., Fichtner, H., & Borrmann, T. (2006a). Effects of different solar wind speed profiles in the heliosheath on the modulation of cosmic-ray protons. The Astrophysical Journal, 640, 1119–1134. doi:10.1086/500162.

    Article  Google Scholar 

  • Langner, U. W., Potgieter, M. S., Fichtner, H., & Borrmann, T. (2006b). Modulation of anomalous protons: effects of different solar wind speed profiles in the heliosheath. Journal of Geophysical Research (Space Physics), 111, A01106, 1–14. doi:10.1029/2005JA011066.

    Article  Google Scholar 

  • Lopate, C. (2006). http://ulysses.sr.unh.edu/NeutronMonitor/. Space Physics Data System, University of New Hampshire.

  • Masarik, J., & Beer, J. (1999). Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. Journal of Geophysical Research, 104, 12099–12112. doi:10.1029/1998JD200091.

    Article  Google Scholar 

  • Masarik, J., & Beer, J. (2009). An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. Journal of Geophysical Research (Atmospheres), 114(D13), D11103. doi:10.1029/2008JD010557.

    Google Scholar 

  • Matthiä, D. (2009). The radiation environment in the lower atmosphere—a numerical approach. Dissertation, Universität Kiel.

    Google Scholar 

  • Matthiä, D., Heber, B., Reitz, G., Meier, M., Sihver, L., Berger, T., & Herbst, K. (2009). Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation. Journal of Geophysical Research (Space Physics), 114(A13), A08104. doi:10.1029/2009JA014125.

    Google Scholar 

  • McComas, D. J., Allegrini, F., Bochsler, P., Bzowski, M., Christian, E. R., Crew, G. B., DeMajistre, R., Fahr, H., Fichtner, H., Frisch, P. C., Funsten, H. O., Fuselier, S. A., Gloeckler, G., Gruntman, M., Heerikhuisen, J., Izmodenov, V., Janzen, P., Knappenberger, P., Krimigis, S., Kucharek, H., Lee, M., Livadiotis, G., Livi, S., MacDowall, R. J., Mitchell, D., Möbius, E., Moore, T., Pogorelov, N. V., Reisenfeld, D., Roelof, E., Saul, L., Schwadron, N. A., Valek, P. W., Vanderspek, R., Wurz, P., & Zank, G. P. (2009). Global observations of the interstellar interaction from the interstellar boundary explorer (IBEX). Science, 326, 959.

    Article  Google Scholar 

  • McCracken, K. G. (2004). Geomagnetic and atmospheric effects upon the cosmogenic 10Be observed in polar ice. Journal of Geophysical Research (Space Physics), 109, 4101. doi:10.1029/2003JA010060.

    Google Scholar 

  • McCracken, K. G., & Beer, J. (2007). Long-term changes in the cosmic ray intensity at Earth, 1428–2005. Journal of Geophysical Research (Space Physics), 112, 10101. doi:10.1029/2006JA012117.

    Google Scholar 

  • Mironova, I. A., Desorgher, L., Usoskin, I. G., Flückiger, E. O., & Bütikofer, R. (2008). Variations of aerosol optical properties during the extreme solar event in January 2005. Geophysical Research Letters, 35, 18610. doi:10.1029/2008GL035120.

    Article  Google Scholar 

  • Neher, H. V. (1967). Cosmic-ray particles that changed from 1954 to 1958 to 1965. Journal of Geophysical Research, 72, 1527.

    Article  Google Scholar 

  • Neher, H. V. (1971). Cosmic rays at high latitudes and altitudes covering four solar maxima. Journal of Geophysical Research, 76, 1637–1651. doi:10.1029/JA076i007p01637.

    Article  Google Scholar 

  • Parker, E. N. (1965). The passage of energetic charged particles through interplanetary space. Planetary and Space Science, 13, 9–49.

    Article  Google Scholar 

  • Phillips, F. M., Stone, W. D., & Fabryka-Martin, J. T. (2001). An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. Chemical Geology, 175(3–4), 689–701. doi:10.1016/S0009-2541(00)00329-6.

    Article  Google Scholar 

  • Pilchowski, J., Kopp, A., Herbst, K., & Heber, B. (2010). On the definition and calculation of a generalised McIlwain parameter. Astrophysics and Space Sciences Transactions, 6, 9–17. doi:10.5194/astra-6-9-2010.

    Article  Google Scholar 

  • Pogorelov, N. V., Borovikov, S. N., Zank, G. P., & Ogino, T. (2009). Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. III. The effects of solar rotation and activity cycle. The Astrophysical Journal, 696, 1478–1490.

    Article  Google Scholar 

  • Potgieter, M. S. (2010). The dynamic heliosphere, solar activity, and cosmic rays. Advances in Space Research, 46, 402–412.

    Article  Google Scholar 

  • Richardson, J. D., & Stone, E. C. (2009). The solar wind in the outer heliosphere. Space Science Reviews, 143, 7–20.

    Article  Google Scholar 

  • Rohs, S., Spang, R., Rohrer, F., Schiller, C., & Vos, H. (2010). A correlation study of high-altitude and midaltitude clouds and galactic cosmic rays by MIPAS-Envisat. Journal of Geophysical Research (Atmospheres), 115(D14), D14212. doi:10.1029/2009JD012608.

    Article  Google Scholar 

  • Scherer, K., & Ferreira, S. E. S. (2005a). A heliospheric hybrid model: hydrodynamic plasma flow and kinetic cosmic ray transport. Astrophysics and Space Sciences Transactions, 1, 17–27.

    Article  Google Scholar 

  • Scherer, K., & Ferreira, S. E. S. (2005b). The heliomagnetic and solar-cycle related variations of the cosmic ray flux modeled with the BoPo-hybrid code. Astronomy & Astrophysics, 442, L11–L14.

    Article  Google Scholar 

  • Scherer, K., Fichtner, H., Borrmann, T., Beer, J., Desorgher, L., Flückiger, E., Fahr, H. J., Ferreira, S. E. S., Langner, U., Potgieter, M. S., Heber, B., Masarik, J., Shaviv, N., & Veizer, J. (2006). Interstellar-terrestrial relations, the variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives. Space Science Reviews. doi:10.1007/s11214-006-9126-6.

    Google Scholar 

  • Scherer, K., Fichtner, H., Ferreira, S. E. S., Büsching, I., & Potgieter, M. S. (2008). Are anomalous cosmic rays the main contribution to the low-energy galactic cosmic ray spectrum? The Astrophysical Journal Letters, 680, L105–L108. doi:10.1086/589969.

    Article  Google Scholar 

  • Scherer, K., Fichtner, H., Effenberger, F., Burger, R. A., & Wiengarten, T. (2010). Comparison of different analytic heliospheric magnetic field configurations and their significance for the particle injection at the termination shock. Astronomy & Astrophysics, 521, A1.

    Article  Google Scholar 

  • Scherer, K., Fichtner, H., Strauss, D. T., Ferreira, S. E. S., Potgieter, M., & Fahr, H. J. (2011). On cosmic ray modulation beyond the heliopause: where is the modulation boundary? The Astrophysical Journal. doi:10.1088/0004-637X/735/2/128.

    Google Scholar 

  • Steinhilber, F., Abreu, J. A., & Beer, J. (2008). Solar modulation during the Holocene. Astrophysics and Space Sciences Transactions, 4, 1–6.

    Article  Google Scholar 

  • Sternal, O. (2010). Transport of galactic cosmic rays in different heliospheric magnetic field configurations. Dissertation, Universität Kiel.

    Google Scholar 

  • Strong, A. W., & Moskalenko, I. V. (1998). Propagation of cosmic-ray nucleons in the galaxy. Astrophysical Journal, 509, 212–228. doi:10.1086/306470. http://adsabs.harvard.edu/abs/1998ApJ...509..212S

    Article  Google Scholar 

  • Svensmark, H. (1998). Influence of cosmic rays on Earth’s climate. Physical Review Letters, 81, 5027–5030.

    Article  Google Scholar 

  • Svensmark, H., & Friis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. Journal of Atmospheric and Terrestrial Physics, 59, 1225–1232.

    Article  Google Scholar 

  • Tinsley, B. A., Burns, G. B., & Zhou, L. (2007). The role of the global electric circuit in solar and internal forcing of clouds and climate. Advances in Space Research, 40, 1126–1139.

    Article  Google Scholar 

  • Usoskin, I. G., & Kovaltsov, G. A. (2006). Cosmic ray induced ionization in the atmosphere: full modeling and practical applications. Journal of Geophysical Research (Atmospheres), 111, 21206. doi:10.1029/2006JD007150.

    Article  Google Scholar 

  • Usoskin, I. G., & Kovaltsov, G. A. (2008). Cosmic rays and climate of the Earth: possible connection. Comptes Rendus. Géoscience, 340, 441–450.

    Article  Google Scholar 

  • Usoskin, I. G., Alanko-Huotari, K., Kovaltsov, G. A., & Mursula, K. (2005). Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. Journal of Geophysical Research (Space Physics), 110(A9), A12108. doi:10.1029/2005JA011250.

    Google Scholar 

  • Usoskin, I. G., Solanki, S. K., Kovaltsov, G. A., Beer, J., & Kromer, B. (2006). Solar proton events in cosmogenic isotope data. Geophysical Research Letters, 33, 8107. doi:10.1029/2006GL026059.

    Article  Google Scholar 

  • Vonmoos, M., Beer, J., & Muscheler, R. (2006). Large variations in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project ice core. Journal of Geophysical Research (Space Physics), 111, 10105. doi:10.1029/2005JA011500.

    Google Scholar 

  • Webber, W. R., & Higbie, P. R. (2003). Production of cosmogenic Be nuclei in the Earth’s atmosphere by cosmic rays: Its dependence on solar modulation and the interstellar cosmic ray spectrum. Journal of Geophysical Research (Space Physics), 108, 1355. doi:10.1029/2003JA009863.

    Article  Google Scholar 

  • Webber, W. R., & Higbie, P. R. (2008). Limits on the interstellar cosmic ray electron spectrum below 1–2 GeV derived from the galactic polar radio spectrum and constrained by new Voyager 1 measurements. Journal of Geophysical Research (Space Physics), 113(A12), A11106. doi:10.1029/2008JA013386.

    Google Scholar 

  • Webber, W. R., & Higbie, P. R. (2009). Galactic propagation of cosmic ray nuclei in a model with an increasing diffusion coefficient at low rigidities: a comparison of the new interstellar spectra with Voyager data in the outer heliosphere. Journal of Geophysical Research (Space Physics), 114(A13), A02103. doi:10.1029/2008JA013689.

    Google Scholar 

  • Wissing, J. M., Kallenrode, M.-B., Wieters, N., Winkler, H., & Sinnhuber, M. (2010). Atmospheric ionization module osnabrck (aimos): 2. total particle inventory in the October–November 2003 event and ozone. Journal of Geophysical Research, 115, A02308.

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to thank Friedhelm Steinhilber, Daniel Matthiä, Marius Potgieter, Stefan Ferreira and Hans Fahr for valuable discussions. We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for the project “Heliocauses” (FI 706/6-1/2/3 and HE 3279/8-2/3/4) and the Bundesministerium für Forschung und Bildung (BMBF) for supporting the German-South African collaboration (projects SUA 07/013 and 08/011) and the Ulysses/KET project (grant 50 OC 0902) through the Deutsches Zentrum für Luft- und Raumfahrt (DLR). This work profited from the discussions with the participants of the ISSI team meeting “Transport of Energetic Particles in the Inner Heliosphere”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Fichtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fichtner, H., Heber, B., Herbst, K., Kopp, A., Scherer, K. (2013). Solar Activity, the Heliosphere, Cosmic Rays and Their Impact on the Earth’s Atmosphere. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_4

Download citation

Publish with us

Policies and ethics