Skip to main content

The Atmospheric Response to Solar Variability: Simulations with a General Circulation and Chemistry Model for the Entire Atmosphere

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

The coupled general circulation and chemistry model HAMMONIA and the MPI-ESM, consisting of the MAECHAM5 atmospheric GCM and the ocean model MPIOM, have been applied in a multitude of setups to study the response of the earth system to the variable forcing from the sun. This paper motivates the use of complex entire atmosphere models for the study of solar-terrestrial relations, and presents numerical results concerning solar rotational forcing, the response of the atmosphere-ocean system up to the lower thermosphere to 11-year forcing, and the response to particle precipitation. An issue analyzed in more detail is the so-called “secondary” response maximum in equatorial lower stratospheric ozone and temperature. Comparing numerical experiments with a variety of simulation setups it is argued that solar signals in this atmospheric region are easily obscured by variability stemming in particular from ENSO. However, simulations with solar variability as the only variable forcing suggest that indeed, the secondary maximum is of solar origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin, J., Tourpali, K., Rozanov, E., Akiyoshi, H., Bekki, S., Bodeker, G., Bruehl, C., Butchart, N., Chipperfield, M., Deushi, M., Fomichev, V. I., Giorgetta, M. A., Gray, L., Kodera, K., Lott, F., Manzini, E., Marsh, D., Matthes, K., Nagashima, T., Shibata, K., Stolarski, R. S., Struthers, H., & Tian, W. (2008). Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. Journal of Geophysical Research, 113(D11). doi:10.1029/2007JD009391.

  • Baldwin, M. P., & Dunkerton, T. J. (1999). Propagation of the Arctic Oscillation from the stratosphere to the troposphere. Journal of Geophysical Research, 104, 30937–30946. doi:10.1029/1999JD900445.

    Article  Google Scholar 

  • Beig, G., Fadnavis, S., Schmidt, H., & Brasseuer, G. P. (2012). Inter-comparison of 11-year solar cycle response in mesospheric ozone and temperature obtained by HALOE satellite data and HAMMONIA model. Journal of Geophysical Research, 117, D00P10. doi:10.1029/2011JD015697.

    Article  Google Scholar 

  • Boville, B. A. (1995). Middle atmosphere version of the CCM2 (MACCM2): annual cycle and interannual variability. Journal of Geophysical Research, 100, 9017–9039.

    Article  Google Scholar 

  • Cagnazzo, C., Manzini, E., Giorgetta, M. A., Forster, P. M. D. F., & Morcrette, J. J. (2007). Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model. Atmospheric Chemistry & Physics, 7, 2503–2515.

    Article  Google Scholar 

  • Calvo, N., Garcia, R. R., Randel, W. J., & Marsh, D. R. (2010). Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. Journal of the Atmospheric Sciences, 67, 2331–2340. doi:10.1175/2010JAS3433.1.

    Article  Google Scholar 

  • Camp, C. D., & Tung, K. K. (2007). Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophysical Research Letters, 34, 14703–14706. doi:10.1029/2007GL030207.

    Article  Google Scholar 

  • Chandra, S., & McPeters, R. D. (1994). The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites. Journal of Geophysical Research, 99, 20665. doi:10.1029/94JD02010.

    Article  Google Scholar 

  • Chiodo, G., & Schmidt, H. (2012). 11-yr solar-cycle effects in transient hammonia simulations. In preparation.

    Google Scholar 

  • de Grandpré, J., Beagly, S. R., Fomichev, V. I., Griffioen, E., McConnell, J. C., & Medvedev, A. S. (2000). Ozone climatology using interactive chemistry: results from the Canadian middle atmosphere model. Journal of Geophysical Research, 105, 26475–26491.

    Article  Google Scholar 

  • Emmert, J. T., Picone, J. M., & Meier, R. R. (2008). Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near-earth objects. Geophysical Research Letters, 35, L05101. doi:10.1029/2007GL032809.

    Article  Google Scholar 

  • Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G. E., Boville, B. A., Brühl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E., Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Nagashima, T., Newman, P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Shepherd, T. G., Shibata, K., Stolarski, R. S., Struthers, H., Tian, W., & Yoshiki, M. (2006). Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. Journal of Geophysical Research, 111(D10), D22308. doi:10.1029/2006JD007327.

    Article  Google Scholar 

  • Eyring, V., Shepherd, T. G., & Waugh, D. W. (Eds.) (2010). SPARC report on the evaluation of chemistry-climate models.

    Google Scholar 

  • Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D., & Sinclair, R. W. (1980). Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response. Journal of the Atmospheric Sciences, 37, 2265–2297.

    Article  Google Scholar 

  • Fomichev, V. I., Ward, W. E., Beagley, S. R., McLandress, C., McConnell, J. C., McFarlane, N. A., & Shepherd, T. G. (2002). The extended Canadian middle atmosphere model: zonal mean climatology and physical parameterizations. Journal of Geophysical Research, 107. doi:10.1029/2001JD000479.

  • Frame, T. H. A., & Gray, L. J. (2010). The 11-year solar cycle in ERA-40 data: an update to 2008. Journal of Climate, 23, 2213–2222. doi:10.1175/2009JCLI3150.1.

    Article  Google Scholar 

  • Funke, B., Baumgaertner, A., Calisto, M., Egorova, T., Jackman, C. H., Kieser, J., Krivolutsky, A., López-Puertas, M., Marsh, D. R., Reddmann, T., Rozanov, E., Salmi, S.-M., Sinnhuber, M., Stiller, G. P., Verronen, P. T., Versick, S., von Clarmann, T., Vyushkova, T. Y., Wieters, N., & Wissing, J. M. (2011). Composition changes after the “Halloween” solar proton event: the High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmospheric Chemistry & Physics Discussions, 11, 9407–9514. doi:10.5194/acpd-11-9407-2011.

    Article  Google Scholar 

  • Geller, M. A., & Alpert, J. C. (1980). Planetary wave coupling between the troposphere and the middle atmosphere as a possible Sun-weather mechanism. Journal of the Atmospheric Sciences, 37, 1197–1215. doi:10.1175/1520-0469(1980)037<1197:PWCBTT>2.0.CO;2.

    Article  Google Scholar 

  • Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F., & Yiou, P. (2002). Advanced spectral methods for climatic time series. Reviews of Geophysics, 40, 1003.

    Article  Google Scholar 

  • Giorgetta, M. A., Manzini, E., Roeckner, E., Esch, M., & Bengtsson, L. (2006). Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. Journal of Climate, 19, 3882–3901 doi:10.1175/JCLI3830.1.

    Article  Google Scholar 

  • Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., & White, W. (2010). Solar influences on climate. Reviews of Geophysics, 48, RG4001.

    Article  Google Scholar 

  • Gruzdev, A. N., Schmidt, H., & Brasseur, G. P. (2009). The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model. Atmospheric Chemistry and Physics, 9, 595–614.

    Article  Google Scholar 

  • Haigh, J., Blackburn, M., & Day, R. (2005). The response of tropospheric circulation to perturbations in lower-stratospheric temperature. Journal of Climate, 18, 3672–3685.

    Article  Google Scholar 

  • Haigh, J. D. (1996). The impact of solar variability on climate. Science, 272, 981–984. doi:10.1126/science.272.5264.981.

    Article  Google Scholar 

  • Haigh, J. D., & Blackburn, M. (2006). Solar influences on dynamical coupling between the stratosphere and troposphere. Space Science Reviews, 125, 331–344.

    Article  Google Scholar 

  • Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C., & Woods, T. N. (2009). Trends in solar spectral irradiance variability in the visible and infrared. Geophysical Research Letters, 36, L07801. doi:10.1029/2008GL036797.

    Article  Google Scholar 

  • Hood, L. L., Soukharev, B. E., & McCormack, J. P. (2010). Decadal variability of the tropical stratosphere: secondary influence of the El Niño-Southern Oscillation. Journal of Geophysical Research, 115(D14), D11113. doi:10.1029/2009JD012291.

    Article  Google Scholar 

  • Kieser, J. (2011). The influence of precipitating energetic particles on the entire atmosphere—Simulations with HAMMONIA. Ph.D. thesis, Univ. of Hamburg.

    Google Scholar 

  • Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U., & Simmons, A. J. (2007). Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. Journal of Geophysical Research, 112(D20). doi:10.1029/2006JD007879.

  • Kodera, K., & Kuroda, Y. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research, 107. doi:10.1029/2002JD002224.

  • Labitzke, K. (1987). Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophysical Research Letters, 14, 535–537. doi:10.1029/GL014i005p00535.

    Article  Google Scholar 

  • Labitzke, K. (2005). On the solar cycle-QBO relationship: a summary. Journal of Atmospheric and Solar-Terrestrial Physics, 67(1–2), 45–54.

    Article  Google Scholar 

  • Labitzke, K., & van Loon, H. (1988). Associations between the 11-year solar cycle, the QBO and the atmosphere, part I: the troposphere and the stratosphere in the northern hemisphere winter. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 203–210.

    Article  Google Scholar 

  • Lean, J. (2000). Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophysical Research Letters, 27, 2425–2428.

    Article  Google Scholar 

  • Lean, J., & Rind, D. H. (2008). How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophysical Research Letters, 35, L18701.

    Article  Google Scholar 

  • Lee, H., & Smith, A. K. (2003). Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades. Journal of Geophysical Research, 108. doi:10.1029/2001JD001503.

  • Manzini, E., McFarlane, N. A., & McLandress, C. (1997). Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. Journal of Geophysical Research, 102, 25751–25762.

    Article  Google Scholar 

  • Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., & Roeckner, E. (2006). The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. Journal of Climate, 19(16), 3863–3881.

    Article  Google Scholar 

  • Marsh, D. R., & Garcia, R. R. (2007). Attribution of decadal variability in lower-stratospheric tropical ozone. Geophysical Research Letters, 34. doi:10.1029/2007GL030935.

  • Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F., Solomon, S. C., & Matthes, K. (2007). Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 112(D23). doi:10.1029/2006JD008306.

  • Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., & Röske, F. (2003). The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5, 91–127.

    Article  Google Scholar 

  • Matthes, K., Langematz, U., Gray, L. J., Kodera, K., & Labitzke, K. (2004). Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM). Journal of Geophysical Research, 109. doi:10.1029/2003JD004012.

  • Matthes, K., Marsh, D. R., Garcia, R. R., Kinnison, D. E., Sassi, F., & Walters, S. (2010). Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. Journal of Geophysical Research, 115(D14), D18110. doi:10.1029/2009JD013020.

    Article  Google Scholar 

  • Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., & van Loon, H. (2009). Amplifying the pacific climate system response to a small 11-year solar cycle forcing. Science, 325, 1114–1118. doi:10.1126/science.1172872.

    Article  Google Scholar 

  • Misios, S., & Schmidt, H. (2012, in press). Mechanisms involved in the amplification of the 11-yr solar cycle signal in the tropical Pacific Ocean. Journal of Climate. doi:10.1175/JCLI-D-11-00261.1.

  • Qian, L., Roble, R. G., Solomon, S. C., & Kane, T. J. (2006). Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24. Geophysical Research Letters, 33, L23705. doi:10.1029/2006GL027185.

    Article  Google Scholar 

  • Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., N. H. & Russell, J. M. (2007). Energetic particle precipitation effects on the southern hemisphere stratosphere in 1992–2005. Journal of Geophysical Research, 112.

    Google Scholar 

  • Randel, W. J., Shine, K. P., Austin, J., Barnett, J., Claud, C., Gillett, N. P., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A., Nash, J., Seidel, D. J., Thompson, D. W. J., Wu, F., & Yoden, S. (2009). An update of observed stratospheric temperature trends. Journal of Geophysical Research, 114(D13), D02107. doi:10.1029/2008JD010421.

    Article  Google Scholar 

  • Rasch, P. J., Boville, B. A., & Brasseur, G. P. (1995). A three-dimensional general circulation model with coupled chemistry for the middle atmosphere. Journal of Geophysical Research, 100, 9041–9071.

    Article  Google Scholar 

  • Reid, G. C., Solomon, S., & Garcia, R. R. (1991). Response of the middle atmosphere to the solar proton events of August–December, 1989. Geophysical Research Letters, 18, 1019–1022. doi:10.1029/91GL01049.

    Article  Google Scholar 

  • Richards, P. G., Fennelly, J. A., & Torr, D. G. (1994). A solar EUV flux model for aeronomic calculations. Journal of Geophysical Research, 99, 8981–8992 (Correction, JGR, 99, 13283, 1994).

    Article  Google Scholar 

  • Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., & Tompkins, A. (2003). The atmospheric general circulation model ECHAM 5. Part I: model description (Tech. Rep. 349). MPI for Meteorology, Hamburg, Germany.

    Google Scholar 

  • Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., & Schulzweida, U. (2006). Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. Journal of Climate, 19, 3771–3791.

    Article  Google Scholar 

  • Roy, I., & Haigh, J. D. (2010). Solar cycle signals in sea level pressure and sea surface temperature. Atmospheric Chemistry & Physics, 10, 3147–3153.

    Article  Google Scholar 

  • Schmidt, H., Brasseur, G. P., & Giorgetta, M. A. (2010). Solar cycle signal in a general circulation and chemistry model with internally generated quasi-biennial oscillation. Journal of Geophysical Research, 115(D14), D00I14. doi:10.1029/2009JD012542.

    Article  Google Scholar 

  • Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., & Walters, S. (2006). The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. Journal of Climate, 19(16), 3903–3931.

    Article  Google Scholar 

  • Shindell, D., Rind, D., Balachandran, N., Lean, J., & Lonergan, J. (1999). Solar cycle variability, ozone, and climate. Science, 284, 305–308.

    Article  Google Scholar 

  • Smith, A. K., & Matthes, K. (2008). Decadal-scale periodicities in the stratosphere associated with the solar cycle and the QBO. Journal of Geophysical Research, 113(D12), D05311. doi:10.1029/2007JD009051.

    Article  Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (Eds.) (2007). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Soukharev, B. E., & Hood, L. L. (2006). Solar cycle variation of stratospheric ozone: multiple regression analysis of long-term satellite data sets and comparisons with models. Journal of Geophysical Research, 111. doi:10.1029/2006JD007107.

  • Steil, B., Brühl, C., Manzini, E., Crutzen, P. J., Lelieveld, J., Rasch, P. J., Roeckner, E., & Krüger, K. (2003). A new interactive chemistry-climate model: 1. Present-day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data. Journal of Geophysical Research, 108(D9), 4290. doi:10.1029/2002JD002971.

    Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2009). A summary of the CMIP5 experiment design. http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor CMIP5 design.pdf.

  • van Loon, H., Meehl, G. A., & Shea, D. J. (2007). Coupled air-sea response to solar forcing in the Pacific region during northern winter. Journal of Geophysical Research, 112(D2). doi:10.1029/2006JD007378.

  • Wissing, M., Kallenrode, M.-B., Kieser, J., Schmidt, H., Rietveld, M. T., Stroemme, A., & Erickson, P. T. (2011). Atmospheric ionization module osnabrück (aimos) 3: comparison of electron density simulations by aimos/hammonia and incoherent scatter radar measurements. Journal of Geophysical Research, 116, A08305. doi:10.1029/2010JA016300.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under grants SCHM2158/1-(1-3). Most of the numerical simulations have been performed on the computers and with the support of the German Climate Computing Centre (DKRZ). The authors would like to thank Guy P. Brasseur and Marco A. Giorgetta for many valuable discussions during the course of the project, and Heinz-Jürgen Punge for help with the MLR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmidt, H., Kieser, J., Misios, S., Gruzdev, A.N. (2013). The Atmospheric Response to Solar Variability: Simulations with a General Circulation and Chemistry Model for the Entire Atmosphere. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_31

Download citation

Publish with us

Policies and ethics