Skip to main content

Solar Effects on Chemistry and Climate Including Ocean Interactions

  • Chapter
Book cover Climate and Weather of the Sun-Earth System (CAWSES)

Abstract

In the Project on Solar Effects on Chemistry and Climate Including Ocean Interactions (ProSECCO) fundamental questions of the impact of solar variability on Earth have been investigated with improved climate system models and observations. On the decadal time scale, the atmospheric signature of the 11-year Schwabe cycle and the underlying mechanisms have been studied. This included the impact of variations in UV radiation and particle precipitation on stratospheric chemistry and ozone, as well as on the solar signal in the troposphere and on climate. On the centennial to millennium time scale, effects of solar variability on climate of different pre-industrial periods, focusing on the Maunder Minimum and the mid-Holocene, have been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu, J., Beer, J., Steinhilber, F., Tobias, S., & Weiss, N. (2008). For how long will the current grand maximum of solar activity persist? Geophysical Research Letters, 35, L20109.

    Article  Google Scholar 

  • Bal, S., Schimanke, S., Spangehl, T., & Cubasch, U. (2011). On the robustness of the solar cycle signal in the pacific region. GRL, 38. doi:10.1029/2011GL047964.

  • Baumgaertner, A., Jöckel, P., & Brühl, C. (2009). Energetic particle precipitation in ECHAM5/MESSy1 Part 1: downward transport of upper atmospheric NO x produced by low energy electrons. Atmospheric Chemistry and Physics, 9, 2729–2740.

    Article  Google Scholar 

  • Baumgaertner, A., Jöckel, P., Riede, H., Stiller, G., & Funke, B. (2010). Energetic particle precipitation in ECHAM5/MESSy1 Part 2: solar proton events. Atmospheric Chemistry and Physics, 10, 7285–7302.

    Article  Google Scholar 

  • Bodeker, G., Boyd, I., & Matthews, W. (1998). Trends and variability in vertical ozone and temperature profiles measured by ozonesondes at Lauder, New Zealand: 1986–1996. Journal of Geophysical Research, 103(D22), 28661–28681.

    Article  Google Scholar 

  • Brasseur, G., De Rudder, A., Keating, G., & Pitts, M. (1987). Response of middle atmosphere to short-term solar ultraviolet variations: 2. Theory. Journal of Geophysical Research, 92(D1), 903–914.

    Article  Google Scholar 

  • Cahalan, R., Wen, G., Harder, J., & Pilewskie, P. (2010). Temperature response to spectral solar variability on decadal time scales. Geophysical Research Letters, 37. doi:10.1029/2009GL041898.

  • Cubasch, U., Voss, R., Hegerl, G. C., Waszkewitz, J., & Crowley, T. J. (1997). Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Climate Dynamics, 13(11), 757–767.

    Article  Google Scholar 

  • Forster, P., Fomichev, V., Rozanov, E., Cagnazzo, C., Jonsson, A., Langematz, U., Fomin, B., Iacono, M., Mayer, B., Mlawer, E., Myhre, G., Portmann, R., Akiyoshi, H., Falaleeva, V., Gillett, N., Karpechko, A., Li, J., Lemennais, P., Morgenstern, O., Oberländer, S., Sigmond, M., & Shibata, K. (2011). Evaluation of radiation scheme performance within chemistry-climate models. Journal of Geophysical Research, D10302. doi:10.1029/2010JD015361.

  • Frame, T. H. A., & Gray, L. J. (2010). The 11-year solar cycle in ERA-40 data: an update to 2008. Journal of Climate, 23, 2213–2222.

    Article  Google Scholar 

  • Giorgetta, M., Manzini, E., Roeckner, E., Esch, M., & Bengtsson, L. (2006). Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. Journal of Climate, 19, 3882–3901.

    Article  Google Scholar 

  • Gray, L., Beer, J., Geller, M., Haigh, J., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G., Shindell, D., van Geel, B., & White, W. (2010). Solar influences on climate. Review of Geophysics, 48(RG4001).

    Google Scholar 

  • Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561–566.

    Article  Google Scholar 

  • Haigh, J. (1999). A GCM study of climate change in response to the 11-year solar cycle. Quarterly Journal of the Royal Meteorological Society, 125, 871–892.

    Article  Google Scholar 

  • Haigh, J., Blackburn, M., & Day, R. (2005). The response of tropospheric circulation to perturbations in lower-stratospheric temperature. Journal of Climate, 18, 3672–3691.

    Article  Google Scholar 

  • Haigh, J., Winning, A., Toumi, R., & Harder, J. W. (2010). An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696–699.

    Article  Google Scholar 

  • Harder, J., Fontenla, J., Pilewskie, P., Richard, E., & Woods, T. (2009). Trends in solar spectral irradiance variability in the visible and infrared. Geophysical Research Letters, 36, L07801.

    Article  Google Scholar 

  • Hood, L., & Zhou, S. (1998). Stratospheric effects of 27-day solar ultraviolet variations: an analysis of UARS MLS ozone and temperature data. Journal of Geophysical Research, 103(D3), 3629–3638.

    Article  Google Scholar 

  • Huebener, H., Cubasch, U., Langematz, U., Spangehl, T., Niehörster, F., Fast, I., & Kunze, M. (2007). Ensemble climate simulations using a fully coupled ocean-troposphere-stratosphere general circulation model. Philosophical Transactions of the Royal Society of London. A, 365(1857), 2089–2101. doi:10.1098/rsta.2007.2078.

    Article  Google Scholar 

  • Jackman, C., Douglass, A., Rood, R., & McPeters, R. (1990). Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using a two-dimensional model. Journal of Geophysical Research, 95, 7417–7428.

    Article  Google Scholar 

  • Jöckel, P., Sander, R., Kerkweg, A., Tost, H., & Lelieveld, J. (2005). Technical note: the modular earth submodel system (MESSy)—a new approach towards earth system modeling. Atmospheric Chemistry and Physics, 5, 433–444.

    Article  Google Scholar 

  • Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M. G., Sander, R., Steil, B., Stiller, G., Tanarhte, M., Taraborrelli, D., van Aardenne, J., & Lelieveld, J. (2006). The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmospheric Chemistry and Physics, 6, 5067–5104.

    Article  Google Scholar 

  • Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., & Marotzke, J. (2010). Climate and carbon-cycle variability over the last millennium. Climate Past, 6(5), 723–737.

    Article  Google Scholar 

  • Kaspar, F., Spangehl, T., & Cubasch, U. (2007). Northern hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception. Climate Past, 3(2), 181–192. doi:10.5194/cp-3-181-2007.

    Article  Google Scholar 

  • Kirsch, A. (2010). Untersuchung des indischen Monsuns im Mittleren Holozän und im Maunder Minimum im Vergleich zum heutigen Klima mit dem gekoppelten Modell EGMAM. Diploma thesis, Institut für Meteorologie: Freie Universität Berlin.

    Google Scholar 

  • Kodera, K. (2004). Solar influence on the Indian ocean monsoon through dynamical processes. Geophysical Research Letters, 31, L24209.

    Article  Google Scholar 

  • Kodera, K., & Kuroda, Y. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research, 107(D24), 4749.

    Article  Google Scholar 

  • Kodera, K., Matthes, K., Shibata, K., Langematz, U., & Kuroda, Y. (2003). Solar impact on the lower mesospheric subtropical jet: a comparative study with general circulation model simulations. Geophysical Research Letters, 30, 6.

    Google Scholar 

  • Krivova, N., Solanki, S., Wenzler, T., & Podlipnik, B. (2009). Reconstruction of solar UV irradiance since 1974. Journal of Geophysical Research, 114, D00I04.

    Article  Google Scholar 

  • Kubin, A., Langematz, U., & Brühl, C. (2011). Chemistry climate model simulations of the effect of the 27 day solar rotational cycle on ozone, Journal of Geophysical Research, D15301, doi:10.1029/2011JD015665.

  • Kuroda, Y. (2007). Effect of QBO and ENSO on the solar cycle modulation of winter North Atlantic oscillation. Journal of Meteorological Society of Japan, 85(6), 889–898.

    Article  Google Scholar 

  • Kuroda, Y., & Kodera, K. (2002). Effect of solar activity on the polar-night jet oscillation in the northern and southern hemisphere winter. Journal of Meteorological Society of Japan, 80(4B), 973–984.

    Article  Google Scholar 

  • Kuroda, Y., & Yamazaki, K. (2010). Influence of the solar cycle and QBO modulation on the southern annular mode. Geophysical Research Letters, 37, L12703.

    Article  Google Scholar 

  • Langematz, U., Claussnitzer, A., Matthes, K., & Kunze, M. (2005). The climate during the Maunder Minimum: a simulation with the Freie Universität Berlin climate middle atmosphere model (FUB-CMAM). Journal of Atmospheric and Solar-Terrestrial Physics, 67, 55–69.

    Article  Google Scholar 

  • Langematz, U., Brönnimann, S., Graf, H.-F., & Kapala, A. (2008). Die Stratosphäre, Vulkanismus und die NAO/AO. Promet, 34(3), 122–129.

    Google Scholar 

  • Lean, J. (1997). The sun’s variable radiation and its relevance for earth. Annual Review of Astronomy and Astrophysics, 35, 33–67.

    Article  Google Scholar 

  • Lean, J. L. (2000). Evolution of the sun’s spectral irradiance since the Maunder Minimum. Geophysical Research Letters, 27(16), 2425–2428.

    Article  Google Scholar 

  • Luterbacher, J., Xoplaki, E., Dietrich, D., Rickli, R., Jacobeit, J., Beck, C., Gyalistras, D., Schmutz, C., & Wanner, H. (2002). Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Climate Dynamics, 18(7), 545–561.

    Article  Google Scholar 

  • Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., & Ni, F. (2009). Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326(5957), 1256–1260.

    Article  Google Scholar 

  • Marsh, D., & Garcia, R. (2007). Attribution of decadal variability in lower-stratospheric tropical ozone. Geophysical Research Letters, 34, L21807.

    Article  Google Scholar 

  • Matthes, K., Kodera, K., Haigh, J., Shindell, D. T., Shibata, K., Langematz, U., Rozanov, E., & Kuroda, Y. (2003). GRIPS solar experiments intercomparison project: initial results. Papers in Meteorology and Geophysics, 54, 71–90.

    Article  Google Scholar 

  • Matthes, K., Kuroda, Y., Kodera, K., & Langematz, U. (2006). Transfer of the solar signal from the stratosphere to the troposphere: northern winter. Journal of Geophysical Research, 111, D06108.

    Article  Google Scholar 

  • McDonald, A. J., Baumgaertner, A. J. G., Fraser, G. J., George, S. E., & Marsh, S. (2007). Empirical mode decomposition of the atmospheric wave field. Annales Geophysicae, 25, 375–384.

    Article  Google Scholar 

  • Nissen, K., Matthes, K., Langematz, U., & Mayer, B. (2007). Towards a better representation of the solar cycle in general circulation models. Atmospheric Chemistry and Physics, 7, 5391–5400.

    Article  Google Scholar 

  • Oberländer, S., Langematz, U., Matthes, K., Kunze, M., Kubin, A., Harder, J., Krivova, N., Solanki, S., Pagaran, J., & Weber, M. (2012). The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle. Geophysical Research Letters, 39, L01801.

    Article  Google Scholar 

  • Pagaran, J., Weber, M., & Burrows, J. (2009). Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophysical Journal, 700, 1884–1895.

    Article  Google Scholar 

  • Randall, C., Harvey, V., Singleton, C., Bailey, S., Bernath, P., Codrescu, M., Nakajima, H., & Russell, J. (2007). Energetic particle precipitation effects on the Southern hemisphere stratosphere in 1992–2005. Journal of Geophysical Research, 112, D08308.

    Article  Google Scholar 

  • Randel, W., & Wu, F. (2007). A stratospheric ozone profile data set for 1979–2005: variability, trends, and comparisons with column ozone data. Journal of Geophysical Research, 112, D06313.

    Article  Google Scholar 

  • Randel, W., Udelhofen, P., Fleming, E., Geller, M., Gelman, M., Hamilton, K., Karoly, D., Ortland, D., Pawson, S., Swinbank, R., Wu, F., Baldwin, M., Chanin, M.-L., Keckhut, P., Labitzke, K., Remsberg, E., Simmons, A., & Wu, D. (2004). The SPARC intercomparison of middle-atmosphere climatologies. Journal of Climate, 17(5), 986–1003.

    Article  Google Scholar 

  • Randel, W., Shine, K., Austin, J., Barnett, J., Claud, C., Gillet, N., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A., Nash, J., Seidel, D., Thompson, D., Wu, F., & Yoden, S. (2009). An update of observed stratospheric temperature trends. Journal of Geophysical Research, 114, D02107.

    Article  Google Scholar 

  • Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., & Schulzweida, U. (2006). Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. Journal of Climate, 19, 3771–3791.

    Article  Google Scholar 

  • Sander, R., Kerkweg, A., Jöckel, P., & Lelieveld, J. (2005). Technical note: the new comprehensive atmospheric chemistry module MECCA. Atmospheric Chemistry and Physics, 5, 445–450.

    Article  Google Scholar 

  • Scaife, A. A., Spangehl, T., Fereday, D. R., Cubasch, U., Langematz, U., Akiyoshi, H., Bekki, S., Braesicke, P., Butchart, N., Chipperfield, M. P., Gettelman, A., Hardiman, S. C., Michou, M., Rozanov, E., & Shepherd, T. G. (2011). Climate change projections and stratosphere-troposphere interaction. Climate Dynamics. doi:10.1007/s00382-011-1080-7.

    Google Scholar 

  • Schimanke, S., Körper, J., Spangehl, T., & Cubasch, U. (2011). Multi-decadal variability of sudden stratospheric warmings in an AOGCM. Geophysical Research Letters, 38(1), L01801. doi:10.1029/2010GL045756.

    Article  Google Scholar 

  • Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., & Waple, A. (2001). Solar forcing of regional climate change during the maunder minimum. Science, 294(5549), 2149–2152.

    Article  Google Scholar 

  • Simpson, I., Blackburn, M., & Haigh, J. (2009). The role of eddies in driving the tropospheric response to stratospheric heating perturbations. Journal of the Atmospheric Sciences, 66(5), 1347–1365.

    Article  Google Scholar 

  • Smith, A., & Matthes, K. (2008). Decadal-scale periodicities in the stratosphere associated with the solar cycle and the QBO. Journal of Geophysical Research, 113, D05311.

    Article  Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (Eds.) (2007). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Soukharev, B., & Hood, L. (2006). Solar cycle variation of stratospheric ozone: multiple regression analysis of long-term satellite data sets and comparisons with models. Journal of Geophysical Research, 111, D20314.

    Article  Google Scholar 

  • Spangehl, T., & Raible, C. C. (2008). Variationen der NAO auf Basis von langen Zeitreihen, Datenrekonstruktionen und Simulationen der letzten 500 Jahre. Promet, 34(3), 101–107.

    Google Scholar 

  • Spangehl, T., Cubasch, U., Raible, C. C., Schimanke, S., Körper, J., & Hofer, D. (2010). Transient climate simulations from the Maunder Minimum to present day: role of the stratosphere. Journal of Geophysical Research, 115, D00I10. doi:10.1029/2009JD012358.

    Article  Google Scholar 

  • SPARC (2010). SPARC report on the evaluation of chemistry-climate models (Tech. Rep. WMO/TD-No. 1526). SPARC Report, No. 5, WCRP-132.

    Google Scholar 

  • Steinbrecht, W., Claude, H., Schönenborn, F., McDermid, I. S., Leblanc, T., Godin, S., Song, T., Swart, D., Meijer, Y. J., Bodeker, G. E., Connor, B. J., Kämpfer, N., Hocke, K., Calisesi, Y., Schneider, N., de la Noë, J., Parrish, A., Boyd, I. S., Brühl, C., Steil, B., Giorgetta, M., Manzini, E., Thomason, L., Zawodny, J., McCormick, M., Russell, J., Bhartia, P., Stolarski, R., & Hollandsworth-Frith, S. (2006). Long-term evolution of upper stratospheric ozone at selected stations of the network for the detection of stratospheric change. Journal of Geophysical Research, 111, D10308.

    Article  Google Scholar 

  • Thuburn, J., & Craig, G. (2000). Stratospheric influence on tropopause height: the radiative constraint. Journal of the Atmospheric Sciences, 57, 17–28.

    Article  Google Scholar 

  • Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., & Widmann, M. (2008). Mid- to late Holocene climate change: an overview. Quaternary Science Reviews, 27(19–20), 1791–1828. doi:10.1029/2010GL045756.

    Article  Google Scholar 

  • Woollings, T., Lockwood, M., Masato, G., Bell, C., & Gray, L. (2010). Enhanced signature of solar variability in Eurasian winter climate. Geophysical Research Letters, 37(20), L20805.

    Article  Google Scholar 

Download references

Acknowledgements

Model simulations with EMAC-FUB were performed at an SGI-Altix supercomputer of HLRN Konrad-Zuse-Zentrum Berlin and on an IBM power-6 at ECMWF in Reading, UK with computing time provided by DWD. The EMAC (L90) simulations were performed on the IBM power-6 computer at Rechenzentrum Garching of Max-Planck-Society. Simulations with EGMAM were performed on a NEC-SX6 supercomputer at DKRZ, Hamburg. Data of simulations with ECHO-G were provided by E. Zorita (Helmholtz-Zentrum Geesthacht, formerly GKSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Langematz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Langematz, U., Kubin, A., Brühl, C., Baumgaertner, A.J.G., Cubasch, U., Spangehl, T. (2013). Solar Effects on Chemistry and Climate Including Ocean Interactions. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_29

Download citation

Publish with us

Policies and ethics