Skip to main content

Impact of Short-Term Solar Variability on the Polar Summer Mesopause and Noctilucent Clouds

  • Chapter

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

The Earth’s middle atmosphere is affected by short-term solar variability in a variety of ways. This chapter focuses on the investigation of two different short-term solar effects on the polar summer mesopause region and on noctilucent clouds (NLCs). First, the effect of solar proton events (SPEs) on the thermal conditions near the polar summer mesopause and consequently on NLCs is discussed. An analysis of the SBUV(/2) time series to identify examples of NLC depletion due to SPEs shows that NLCs are probably frequently affected during strong SPEs. As part of this study a physical mechanism explaining a dynamically induced warming at the polar summer mesopause during and after SPEs is investigated using model simulations with the Kühlungsborn Mechanistic General Circulation Model (KMCM). A second aspect related to the effect of SPEs on NLCs is on the SPE-induced ion-chemical conversion of H2O to HO x , leading to a possible sublimation of NLCs. However, this effect was found to be of minor importance compared to the dynamically induced temperature effect. Second, we discuss the recently discovered 27-day solar cycle signature in NLCs, which was identified in SCIAMACHY as well as SBUV satellite observations of NLCs using cross correlation analysis and the superposed epoch method. NLC occurrence rate and albedo anomalies are anti-correlated with Lyman-α anomalies with a time-lag of 1 day at most. The sensitivities of the NLC albedo anomalies to Lyman-α forcing in terms of the 27-day and the 11-year solar cycle were found to agree within their uncertainties. This finding suggests that the same underlying physical mechanism drives the 27-day as well as the 11-year solar cycle signature in NLCs. The exact mechanism is still unknown, however.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akmaev, R. A., Fomichev, V. I., & Zhu, X. (2006). Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1879–1889.

    Article  Google Scholar 

  • Becker, E. (2009). Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. Journal of the Atmospheric Sciences, 66, 647–666.

    Article  Google Scholar 

  • Becker, E., & von Savigny, C. (2010). Dynamical heating of the polar summer mesopause induced by solar proton events. Journal of Geophysical Research, 115, D00I18. doi:10.1029/2009JD012561.

    Article  Google Scholar 

  • Beig, G., Scheer, J., Mlynczak, M. G., & Keckhut, P. (2008). Overview of the temperature response in the mesosphere and lower thermosphere to solar activity. Reviews of Geophysics, 46, RG3002. doi:10.1029/2007RG000236.

    Article  Google Scholar 

  • Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., & Goede, A. P. H. (1999). Sciamachy: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56, 127–150.

    Article  Google Scholar 

  • Brasseur, G., & Baets, P. D. (1986). Ions in the mesosphere and lower thermosphere: a two-dimensional model. Journal of Geophysical Research, 91, 4025–4046.

    Article  Google Scholar 

  • Chree, C. (1912). Some phenomena of sunspots and of terrestrial magnetism at kew observatory. Philosophical Transactions of the Royal Society of London, 212, 75–116.

    Google Scholar 

  • Crutzen, J. P., Isaksen, I. S. A., & Reid, G. C. (1975). Solar proton events: stratospheric sources of nitric oxide. Science, 189, 3179–3186.

    Article  Google Scholar 

  • DeLand, M. T., Shettle, E., Thomas, G., & Olivero, J. (2003). Solar backscattered ultraviolet (sbuv) observations of polar mesospheric clouds (pmcs) over two solar cycles. Journal of Geophysical Research, 108, 8445. doi:10.1029/2002JD002398.

    Article  Google Scholar 

  • Dikty, S., Weber, M., von Savigny, C., Sonkaew, T., Rozanov, A., & Burrows, J. P. (2010). Modulations of the 27 day solar rotation signal in stratospheric ozone from scanning imaging absorption spectrometer for atmospheric cartography (sciamachy) (2003–2008). Journal of Geophysical Research, 115, D00I15. doi:10.1029/2009JD012379.

    Article  Google Scholar 

  • Ebisuzaki, W. (1997). A method to estimate the statistical significance of a correlation when the data are serially correlated. Journal of Climate, 10, 2147–2153.

    Article  Google Scholar 

  • Fioletov, V. E. (2009). Estimating the 27-day and 11-year solar cycle variations in tropical upper stratospheric ozone. Journal of Geophysical Research, 114, D02302. doi:10.1029/2008JD010499.

    Article  Google Scholar 

  • Friedrich, M., & Torkar, K. M. (1988). Empirical transition heights of cluster ions. Advances in Space Research, 8, 4235–4238.

    Google Scholar 

  • Hervig, M., & Siskind, D. (2006). Decadal and inter-hemispheric variability in polar mesospheric clouds, water vapor, and temperature. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 30–41.

    Article  Google Scholar 

  • Hood, L. L. (1986). Coupled stratospheric ozone and temperature response to short-term changes in solar ultraviolet flux: an analysis of nimbus 7 sbuv and sams data. Journal of Geophysical Research, 91, 5264–5276.

    Article  Google Scholar 

  • Hood, L. L., Huang, Z., & Bougher, S. W. (1991). Mesospheric effects of solar ultraviolet variations: further analysis of sme ir ozone and nimbus 7 sams temperature data. Journal of Geophysical Research, 96, 12989–13002.

    Article  Google Scholar 

  • Höppner, K., & Bittner, M. (2007). Evidence for solar signals in the mesopause temperature variability? Journal of Atmospheric and Solar-Terrestrial Physics, 69, 431–448.

    Article  Google Scholar 

  • Jackman, C. H., DeLand, M. T., Labow, G. J., Fleming, E. L., Weisenstein, D. K., Ko, M. K. W., Sinnhuber, M., & Russell, J. M. (2005). Neutral atmospheric influences of the solar proton events in October–November 2003. Journal of Geophysical Research, 110, A09S27. doi:10.1029/2004JA010888.

    Article  Google Scholar 

  • Jackman, C. H., Roble, R. G., & Fleming, E. L. (2007). Mesospheric dynamical changes induced by solar proton events in October–November 2003. Geophysical Research Letters, 34, L04812. doi:10.1029/2006GL028328.

    Article  Google Scholar 

  • Keating, G. M., Pitts, M. C., Brasseur, G., & de Rudder, A. (1987). Response of middle atmosphere to short-term solar ultraviolet variations: 1. Observations. Journal of Geophysical Research, 92, 889–902.

    Article  Google Scholar 

  • Krivolutsky, A. A., Klyuchnikova, A. V., Zakharov, G. R., Vyushkova, T. Y., & Kuminov, A. A. (2006). Dynamical response of the middle atmosphere to solar proton event of July 2000: three-dimensional model simulations. Advances in Space Research, 37, 1602–1613.

    Article  Google Scholar 

  • Leslie, R. C. (1885). Sky glows. Nature, 32, 245.

    Article  Google Scholar 

  • Lübken, F.-J., Berger, U., & Baumgarten, G. (2009). Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds. Journal of Geophysical Research, 114, D00106. doi:10.1029/2009JD012377.

    Article  Google Scholar 

  • Mlynczak, M. G. (1996). Energetics of the middle atmosphere: theory and observation requirements. Advances in Space Research, 17, 117–126.

    Article  Google Scholar 

  • Oinats, A., Ratovsky, K., & Kotovich, G. (2008). Influence of the 27-day solar flux variations on the ionosphere parameters measured at Irkutsk in 2003–2005. Advances in Space Research, 42, 639–644.

    Article  Google Scholar 

  • Pruppacher, H. R., & Klett, J. D. (1997). Microphysics of clouds and precipitation. Berlin: Springer.

    Google Scholar 

  • Rahpoe, N., von Savigny, C., Robert, C. E., Deland, M. T., & Burrows, J. P. (2011). Impact of solar proton events on noctilucent clouds. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 2073–2081.

    Article  Google Scholar 

  • Rapp, M., & Thomas, G. E. (2006). Modeling the microphysics of mesospheric ice particles: assessment of current capabilities and basic sensitivities. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 715–744.

    Article  Google Scholar 

  • Read, W. G., et al. (2007). Aura microwave limb sounder upper tropospheric and lower stratospheric h2o and relative humidity with respect to ice validation Journal of Geophysical Research, 112, D24S35. doi:10.1029/2007JD008752.

    Article  Google Scholar 

  • Rhoden, E., Forbes, J., & Marcos, F. (2000). The influence of geomagnetic and solar variabilities on lower thermosphere density. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 999–1013.

    Article  Google Scholar 

  • Robert, C. (2009). Investigation of noctilucent cloud properties and their connection with solar activity. Ph.D. thesis, Univ. Bremen.

    Google Scholar 

  • Robert, C. E., von Savigny, C., Burrows, J. P., & Baumgarten, G. (2009). Climatology of noctilucent cloud radii and occurrence frequency using sciamachy. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 408–423.

    Article  Google Scholar 

  • Robert, C. E., von Savigny, C., Rahpoe, N., Bovensmann, H., Burrows, J. P., DeLand, M. T., & Schwartz, M. J. (2010). First evidence of a 27 day solar signature in noctilucent cloud occurrence frequency. Journal of Geophysical Research, 115, D00I12. doi:10.1029/2009JD012359.

    Article  Google Scholar 

  • Roble, R. G., & Dickinson, R. E. (1989). How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere. Geophysical Research Letters, 16, 1441. doi:10.1029/GL016i012p01441.

    Article  Google Scholar 

  • Rohen, G. J., von Savigny, C., Sinnhuber, M., Eichmann, K.-U., Kaiser, J. W., Llewellyn, E. J., Rozanov, A., Bovensmann, H., & Burrows, J. P. (2005). Impact of the October/November 2003 solar proton events on mesospheric ozone: sciamachy measurement and model results. Journal of Geophysical Research, 110, A09S39. doi:10.1029/2004JA010984.

    Article  Google Scholar 

  • Schwartz, M., Lambert, A., Manney, G., Read, W., Livesey, N., Froidevaux, L., Ao, C., Bernath, P., Boone, C., Cofield, R., Daffer, W., Drouin, B., Fetzer, E., Fuller, R., Jarnot, R., Jiang, J., Jiang, Y., Knosp, B., Krüger, K., Li, J.-L., Mlynczak, M., Pawson, S., Russell III, J., Santee, M., Snyder, W., Stek, P., Thurstans, R., Tompkins, A., Wagner, P., Walker, K., Waters, J., & Wu, D. (2008). Validation of the aura microwave limb sounder temperature and geopotential height measurements. Journal of Geophysical Research, 113, D15S11.

    Article  Google Scholar 

  • Solomon, S., Rusch, D. W., Gerard, J.-C., Reid, G. C., & Crutzen, P. J. (1981). The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere ii: odd hydrogen. Planetary and Space Science, 29, 885–892.

    Article  Google Scholar 

  • Swider, W., & Keneshea, T. J. (1973). Decrease of ozone and atomic oxygen in the lower mesosphere during a pca event. Planetary and Space Science, 21, 1969.

    Article  Google Scholar 

  • Thomas, G. E., Olivero, J. J., Jensen, E. J., Schröder, W., & Toon, O. B. (1989). Relation between increasing methane and the presence of ice clouds at the mesopause. Nature, 338, 490–492.

    Article  Google Scholar 

  • Thomas, G. E., McPeters, R. D., & Jensen, E. J. (1991). Satellite observations of polar mesospheric clouds by the solar backscattered ultraviolet spectral radiometer: evidence of a solar cycle dependence. Journal of Geophysical Research, 96, 927–939.

    Article  Google Scholar 

  • Toon, O. B., Turco, R. P., Westphal, D., Malone, R., & Liu, M. S. (1988). A multidimensional model for aerosols: description of computational analogs. Journal of the Atmospheric Sciences, 45, 2123–2143.

    Article  Google Scholar 

  • von Savigny, C., Sinnhuber, M., Bovensmann, H., Burrows, J., Kallenrode, M.-B., & Schwartz, M. (2007a). On the disappearance of noctilucent clouds during the January 2005 solar proton events. Geophysical Research Letters, 34, L02805. doi:10.1029/2006GL028106.

    Article  Google Scholar 

  • von Savigny, C., Robert, C., Bovensmann, H., Burrows, J. P., & Schwartz, M. (2007b). Satellite observations of the quasi 5-day wave in noctilucent clouds and mesopause temperatures. Geophysical Research Letters, 34, L24808. doi:10.1029/2007GL030987.

    Article  Google Scholar 

  • von Savigny, C., Robert, C., Baumgarten, G., Bovensmann, H., & Burrows, J. P. (2009). Comparison of nlc particle sizes derived from sciamachy/envisat observations with ground-based lidar measurements at alomar (69 n). Atmospheric Measurement Techniques, 2, 523–531.

    Article  Google Scholar 

  • Winkler, H., Kazeminejad, S., Sinnhuber, M., Kallenrode, M.-B., & Notholt, J. (2009). The conversion of mesospheric hcl into active chlorine during the solar proton event in July 2000 in the northern polar region. Journal of Geophysical Research, 114, D00I03. doi:10.1029/2008JD011587.

    Article  Google Scholar 

  • Winkler, H., von Savigny, C., Burrows, J. P., Wissing, J. M., Schwartz, M. J., Lambert, A., & Garcia-Comas, M. (2012). Impacts of the January 2005 solar particle event on noctilucent clouds and water at the polar summer mesopause. Atmospheric Chemistry and Physics, 12, 5633–5646. doi:10.5194/acp-12-5633-2012.

    Article  Google Scholar 

  • Wissing, J.-M., & Kallenrode, M.-B. (2009). Atmospheric ionisation module osnabrück (aimos): a 3-d model to determine atmospheric ionization by energetic charged particles from different populations. Journal of Geophysical Research, 114, A06104. doi:10.1029/2008JA013884.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work through the DFG Schwerpunktprogramm CAWSES (Projects WAVE-NLC I and II) is greatly appreciated. We are indebted to the European Space Agency (ESA) for providing SCIAMACHY Level 1 data. SCIAMACHY is jointly funded by Germany, the Netherlands and Belgium. Moreover, we would like to thank NASA and the MLS team—in particular Michael Schwartz (Jet Propulsion Laboratory)—for providing MLS data and assistance with the use of this data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian von Savigny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

von Savigny, C. et al. (2013). Impact of Short-Term Solar Variability on the Polar Summer Mesopause and Noctilucent Clouds. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_20

Download citation

Publish with us

Policies and ethics