Skip to main content

Solar Variability and Trend Effects in Mesospheric Ice Layers

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

In this paper we summarize results from the SOLEIL project (SOLar variability and trend Effects in Ice Layers) which was part of the CAWSES priority program in Germany. We present results from LIMA/ICE which is a global circulation model concentrating on ice clouds (NLC, noctilucent clouds) in the summer mesopause region. LIMA/ICE adapts to ECMWF data in the lower atmosphere which produces significant short term and year-to-year variability. The mean ice cloud parameters derived from LIMA/ICE generally agree with observations. The formation, transport, and sublimation of ice particles causes a significant redistribution of water vapor (‘freeze drying’). Model results are now available for all years since 1961 for various scenarios, e.g., with and without greenhouse gas increase etc. Temperatures and water vapor are affected by solar activity. In general it is warmer during solar maximum, but there is a small height region around the mesopause where it is colder. This complicates the prediction of solar cycle effects on ice layers. The magnitude of the solar cycle effect is ∼1–3 K which is similar to the year-to-year variability. Therefore, only a moderate solar cycle signal is observed in temperatures and in ice layers. Temperature trends at NLC altitudes are partly caused by stratospheric trends (‘shrinking effect’). Trends are generally negative, but are positive in the mesopause region. Again, this complicates a simple prediction of temperature trends on ice layers and requires a complex model like LIMA/ICE. Trends in CO2 and stratospheric O3 enhance mesospheric temperature trends but have comparatively small effects in the ice regime. Comparison of contemporary and historic observations of NLC altitudes leads to negligible temperature trends at NLC altitudes (∼83 km). For the time period of satellite measurements (1979–2009) LIMA/ICE predicts trends in ice cloud brightness and occurrence rates, consistent with observations. Temperature trends are not uniform in time but are stronger until the mid 1990s, and weaker thereafter. This change is presumably related to stratospheric ozone recovery. The accidental coincidence of lowest temperatures and solar cycle minimum in the mid 1990s led to large NLC activity. It is important to consider the time period and the height range when studying temperature and ice cloud trends. In the mesosphere temperature trends can be as large as −(3–5) K/decade (in agreement with observations) or rather small, depending on the time period and height range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    European Center for Medium-range Weather Forecasts.

  2. 2.

    ftp://laspftp.colorado.edu/pub/SEE-DATA/composite-lya.

    In this paper we express Ly α radiation in units of 1011 photons/(cm2⋅s).

  3. 3.

    http://www.esrl.noaa.gov/gmd/ccgg/trends.

  4. 4.

    Solar Backscatter in the Ultraviolet, Total Ozone Mapping System.

  5. 5.

    http://acdb-ext.gsfc.nasa.gov/Data_services/merged/.

  6. 6.

    In this paper all backscatter coefficients β are given in units of 10−10/(m⋅sr).

  7. 7.

    HAMburg MOdel of the Neutral and Ionized Atmosphere.

  8. 8.

    Whole-Atmosphere Community Climate Model.

  9. 9.

    Stratospheric Sounding Units.

References

  • Akmaev, R. A., Fomichev, V. I., & Zhu, X. (2006). Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1879–1889.

    Article  Google Scholar 

  • Baumgarten, G., & Fiedler, J. (2008). Vertical structure of particle properties and water content in noctilucent clouds. Geophysical Research Letters, 35, L10811. doi:10.1029/2007GL033084.

    Article  Google Scholar 

  • Berger, U. (2008). Modeling of middle atmosphere dynamics with LIMA. Journal of Atmospheric and Solar-Terrestrial Physics, 1170–1200. doi:10.1016/j.jastp.2008.02.004.

  • Berger, U., & Lübken, F.-J. (2011). Mesospheric temperature trends at mid-latitudes in summer. Geophysical Research Letters, 38, L22804. doi:10.1029/2011GL049528.

    Article  Google Scholar 

  • DeLand, M. T., Shettle, E. P., Thomas, G. E., & Olivero, J. J. (2003). Solar backscattered ultraviolet (SBUV) observations of polar mesospheric clouds (PMCs) over two solar cycles. Journal of Geophysical Research, 108(D8), 8445. doi:10.1029/2002JD002398.

    Article  Google Scholar 

  • DeLand, M. T., Shettle, E. P., Thomas, G. E., & Olivero, J. J. (2007). Latitude-dependent long-term variations in polar mesospheric clouds from SBUV version 3 PMC data. Journal of Geophysical Research, 112(D10), D10315. doi:10.1029/2006JD007857.

    Article  Google Scholar 

  • Fiedler, J., Baumgarten, G., Berger, U., Hoffmann, P., Kaifler, N., & Lübken, F.-J. (2011). NLC and the background atmosphere above ALOMAR. ACP, 5701–5717. doi:10.5194/acp-11-5701-2011.

  • Fortuin, J. P., & Kelder, H. (1998). An ozone climatology based on ozonesonde and satellite measurements. Journal of Geophysical Research, 103, 31709–31734.

    Article  Google Scholar 

  • Garcia, R. R., Marsh, D. R., Kinnson, D. E., Boville, B. A., & Sassi, F. (2007). Simulation of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical Research, 112, D09301. doi:10.1029/2006JD007485.

    Article  Google Scholar 

  • Gleisner, H., Thejll, P., Stendel, M., Kaas, E., & Machenhauer, B. (2005). Solar signals in tropospheric re-analysis data: comparing NCEP/NCAR and ERA40. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 785–791. doi:10.1016/j.jastp.2005.02.001.

    Article  Google Scholar 

  • Grygalashvyly, M., Sonnemann, G., & Hartogh, P. (2009). Long-term behavior of the concentration of the minor constituents in the mesosphere—a model study. Atmospheric Chemistry and Physics, 9, 2779–2992.

    Article  Google Scholar 

  • Hartogh, P., Sonnemann, G. R., Li, S., Grygalashvyly, M., Berger, U., & Lübken, F.-J. (2010). Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA. Journal of Geophysical Research, 115, D00I17. doi:10.1029/2009JD012364.

    Article  Google Scholar 

  • Hervig, M., & Siskind, D. (2006). Decadal and inter-hemispheric variability in polar mesospheric clouds, water vapor, and temperature. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 30–41.

    Article  Google Scholar 

  • Jesse, O. (1896). Die Höhe der leuchtenden Nachtwolken. Astronomische Nachrichten, 140, 161–168.

    Article  Google Scholar 

  • Jones, O., et al. (2009). Evolution of stratospheric ozone and water vapour time series studied with satellite measurements. Atmospheric Chemistry and Physics, 9, 6055–6075.

    Article  Google Scholar 

  • Keckhut, P., Cagnazzo, C., Chanin, M.-L., Claud, C., & Hauchecorne, A. (2005). The 11-year solar-cycle effects on the temperature in the upper-stratosphere and mesosphere: Part I—Assessment of observations. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 940–947.

    Article  Google Scholar 

  • Keckhut, P., et al. (2011). An evaluation of uncertainties in monitoring middle atmosphere temperatures with the ground-based Lidar network in support of space observations. Journal of Atmospheric and Solar-Terrestrial Physics. doi:10.1016/j.jastp.2011.01.003.

    Google Scholar 

  • Kirkwood, S., Dalin, P., & Réchou, A. (2008). Noctilucent clouds observed from the UK and Denmark—trends and variations over 43 years. Annals of Geophysics, 26, 1243–1254.

    Article  Google Scholar 

  • Lübken, F.-J., & Berger, U. (2007). Interhemispheric comparison of mesospheric ice layers from the LIMA model. Journal of Atmospheric and Solar-Terrestrial Physics, 69(17–18), 2292–2308. doi:10.1016/j.jastp.2007.07.006.

    Article  Google Scholar 

  • Lübken, F.-J., & Berger, U. (2011). Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends. Journal of Geophysical Research, 116, D00P03. doi:10.1029/2010JD015258.

    Article  Google Scholar 

  • Lübken, F.-J., & Höffner, J. (2004). Experimental evidence for ice particle interaction with metal atoms at the high latitude summer mesopause region. Geophysical Research Letters, 31(8), L08103. doi:10.1029/2004GL019586.

    Article  Google Scholar 

  • Lübken, F.-J., Baumgarten, G., Fiedler, J., Gerding, M., Höffner, J., & Berger, U. (2008). Seasonal and latitudinal variation of noctilucent cloud altitudes. Geophysical Research Letters, 35, L06801. doi:10.1029/2007GL032281.

    Article  Google Scholar 

  • Lübken, F.-J., Berger, U., & Baumgarten, G. (2009). Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds. Journal of Geophysical Research, 114, D00106. doi:10.1029/2009JD012377.

    Article  Google Scholar 

  • Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F., Solomon, S. C., & Matthes, K. (2007). Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 112, D23306. doi:10.1029/2006JD008306.

    Article  Google Scholar 

  • Plane, J., Murray, B., Chu, X., & Gardner, C. (2004). Removal of meteoric iron on polar mesosphere clouds. Science, 304, 426–428.

    Article  Google Scholar 

  • Randel, W. J., et al. (2009). An update of observed stratospheric temperature trends. Journal of Geophysical Research, 114, D02107. doi:10.1029/2008JD010421.

    Article  Google Scholar 

  • Rapp, M., & Thomas, G. E. (2006). Modeling the microphysics of mesospheric ice particles: assessment of current capabilities and basic sensitivities. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 715–744.

    Article  Google Scholar 

  • Russell, J. M., et al. (2009). The aeronomy of ice in the mesosphere (AIM) mission: overview and early science results. Journal of Atmospheric and Solar-Terrestrial Physics, 71. doi:10.1016/j.jastp.2008.08.011.

  • Schmidt, H., Brasseur, G. P., & Giorgetta, M. A. (2010). Solar cycle signal in a general circulation and chemistry model with internally generated quasi-biennal oscillation. Journal of Geophysical Research, 115, D00114. doi:10.1029/2009JD012542.

    Google Scholar 

  • Shettle, E. P., DeLand, M. T., Thomas, G. E., & Olivero, J. J. (2009). Long term variations in the frequency of polar mesospheric clouds in the Northern Hemispheric from SBUV. Geophysical Research Letters, 36, L02803. doi:10.1029/2008GL036048.

    Article  Google Scholar 

  • Smith, A. K., Garcia, R. R., Marsh, D. R., Kinnison, D. E., & Richter, J. H. (2010). Simulations of the response of mesospheric circulation and temperature to the Antarctic ozone hole. Geophysical Research Letters, 37, L22803. doi:10.1029/10GL045255.

    Article  Google Scholar 

  • Summers, M. E., Conway, R. R., Englert, C., Siskind, D. E., Stevens III, M. J. R., Gordley, L., & McHugh, M. (2001). Discovery of a layer of enhanced water vapor in the arctic summer mesosphere: implications for polar mesospheric clouds. Geophysical Research Letters, 28, 3601–3604.

    Article  Google Scholar 

  • Thomas, G., Olivero, J., DeLand, M., & Shettle, E. (2003). Comment on ‘Are noctilucent clouds truly a miner’s canary for global change?’. EOS, 84(36), 352–353.

    Article  Google Scholar 

  • Thomas, G. E. (1995). Climatology of polar mesospheric clouds: interannual variability and implications for long-term trends. Geophysical Monograph, 87, 185–200.

    Article  Google Scholar 

  • Tsutsui, J., Nishizawa, K., & Sassi, F. (2009). Response of the middle atmosphere to the 11-year solar cycle simulated with the whole atmosphere community climate model. Journal of Geophysical Research, 114, D02111. doi:10.1029/2008JD010316.

    Article  Google Scholar 

  • von Cossart, G., Fiedler, J., & von Zahn, U. (1999). Size distributions of NLC particles as determined from 3-color observations of NLC by ground-based lidar. Geophysical Research Letters, 26, 1513–1516.

    Article  Google Scholar 

  • von Savigny, C., Petelina, S. V., Karlsson, B., Llewellyn, E. J., Degenstein, D. A., Lloyd, N. D., & Burrows, J. P. (2005). Vertical variation of NLC particle sizes retrieved from Odin/OSIRIS limb scattering observations. Geophysical Research Letters, 32, L07806. doi:10.1029/2004GL021982.

    Article  Google Scholar 

  • von Zahn, U. (2003). Are noctilucent clouds truly a ‘miner’s canary’ for global change? EOS, 84(28), 261–264.

    Article  Google Scholar 

  • von Zahn, U., Baumgarten, G., Berger, U., Fiedler, J., & Hartogh, P. (2004). Noctilucent clouds and the mesospheric water vapour: the past decade. Atmospheric Chemistry and Physics, 4, 2449–2464.

    Article  Google Scholar 

  • WMO (2011). Global ozone research and monitoring project (Report no. 52). Scientific assessment of ozone depletion: 2010, World Meteorological Organization.

    Google Scholar 

Download references

Acknowledgements

We appreciate the continuing financial support from the DFG for the SOLEIL project. The European Centre for Medium-Range Weather Forecasts (ECMWF) is gratefully acknowledged for providing ERA-40 and operational analysis data. Several students have spent a considerable time at the ALOMAR observatory for making measurements. FJL thanks Mrs Rosenthal for her technical support in chairing the CAWSES priority program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz-Josef Lübken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lübken, FJ., Berger, U., Kiliani, J., Baumgarten, G., Fiedler, J. (2013). Solar Variability and Trend Effects in Mesospheric Ice Layers. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_18

Download citation

Publish with us

Policies and ethics