Skip to main content

The Impact of Energetic Particle Precipitation on the Chemical Composition of the Middle Atmosphere: Measurements and Model Predictions

  • Chapter

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

We investigate the impact of energetic particle precipitation on the chemical composition of the middle atmosphere by developing models, and combining model results with observations of the chemical response to particle precipitation events. We show that in the upper stratosphere and lower mesosphere, negative ion chemistry plays a role in addition to the well-known NOx and HOx production due to positive ion chemistry, releasing chlorine from its reservoir, and re-partitioning NOy. Model results also show a large direct impact of energetic electron precipitation on the chemical composition of the upper stratosphere and mesosphere, both during large solar events and during and after geomagnetic storms. Observations show that the indirect impact of energetic electron precipitation events on the middle atmosphere composition can be much larger than the impact of even large solar particle events. However, observations have not shown clear evidence for a direct impact of energetic electron precipitation at altitudes below 80 km so far; if there is a direct impact of energetic electron precipitation on the lower mesosphere and upper stratosphere as suggested by the model results, then it is small compared to the direct contribution of large solar events, or to the indirect impact of energetic electron precipitation due to downward propagation of mesospheric or thermospheric air during polar winter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Berger, U. (2008). Modeling of middle atmosphere dynamics with LIMA. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1170–1200.

    Article  Google Scholar 

  • Boehringer, H., Fahey, D. W., Fehsenfeld, F. C., & Ferguson, E. E. (1983). The role of ion-molecule reactions in the conversion of N2O5 to HNO3 in the stratosphere. Planetary and Space Science, 31, 185–191. doi:10.1016/0032-0633(83)90053-3.

    Article  Google Scholar 

  • Brasseur, G., & Chatel, A. (1983). Modelling of stratospheric ions: a first attempt. Annales Geophysicae, 1, 173–185.

    Google Scholar 

  • Callis, L. B., Natarajan, M., Lambeth, J. D., & Baker, D. N. (1998). Solar-atmospheric coupling by electrons (SOLACE) 2. Calculated stratospheric effects of precipitating electrons, 1979–1988. Journal of Geophysical Research, 103, 28421–28438.

    Article  Google Scholar 

  • Chakrabarty, D. K., & Ganguly, S. (1989). On significant quantities of negative ions observed around the mesopause. Journal of Atmospheric and Solar-Terrestrial Physics, 51, 983–989.

    Article  Google Scholar 

  • Chipperfield, M. (1999). Multiannual simulations with a three-dimensional chemical transport model. Journal of Geophysical Research, 104(D1), 1781–1805.

    Article  Google Scholar 

  • Clilverd, M. A., Seppälä, A., Rodger, C. J., Mlynczak, M. G., & Kozyra, J. U. (2009). Additional stratospheric NOx production by relativistic electron precipitation during the 2004 spring NOx descent event. Journal of Geophysical Research, 114. doi:10.1029/2008JA013472.

  • Crutzen, P. J., Isaksen, I. S., & Reid, G. C. (1975). Solar proton events: stratospheric sources of nitric oxide. Science, 189, 457–458.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., & Vitart, F. (2011). The era-interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.

    Article  Google Scholar 

  • Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopmann, R., Langen, J., Lopez-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., & Zander, R. (2008). Mipas: an instrument for atmospheric and climate research. Atmospheric Chemistry and Physics, 8, 2151–2188.

    Article  Google Scholar 

  • Fritzenwallner, J., & Kopp, E. (1998). Model calculations of the negative ion chemistry in the mesosphere with special emphasis on the chlorine species and the formation of cluster ions. Advances in Space Research, 21, 891–894.

    Article  Google Scholar 

  • Funke, B., López-Puertas, M., Fischer, H., Stiller, G., von Clarmann, T., Wetzel, G., Carli, B., & Belotti, C. (2007). Comment on ‘Origin of the January-April 2004 increase in stratospheric NO2 observed in northern polar latitudes’ by Jean-Baptiste Renard et al. Geophysical Research Letters, 34. doi:10.1029/2006GL027518.

  • Funke, B., Baumgaertner, A. J. G., Calisto, M., Egorova, T., Jackman, C. H., Kieser, J., Krivolutsky, A., López-Puertas, M., Marsh, D. R., Reddmann, T., Rozanov, E., Salm, S.-M., Sinnhuber, M., Stiller, G., Verronen, P. T., Versick, S., von Clarmann, T., Vyushkova, T. Y., Wieters, N., & Wissing, J.-M. (2011). Composition changes after the “Halloween” solar proton event: the High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmospheric Chemistry and Physics, 11, 9089–9139.

    Article  Google Scholar 

  • Heaps, M. G. (1978). Parameterization of the cosmic ray ion-pair production rate above 18 km. Planetary and Space Science, 20, 513–517.

    Article  Google Scholar 

  • Horne, R. B., Lam, M. M., & Green, J. C. (2009). Energetic electron precipitation from the outer radiation belt during geomagnetic storms. Geophysical Research Letters, 36. doi:10.1029/2009GL040236.

  • Jackman, C., McPeters, R., Labow, G., Praderas, C., & Fleming, E. (2001). Northern hemisphere atmospheric effects due to the July 2000 solar proton events. Geophysical Research Letters, 28, 2883–2886.

    Article  Google Scholar 

  • Jackman, C., DeLand, M., Labow, G., Fleming, E., Weisenstein, D., Ko, M., Sinnhuber, M., Anderson, J., & Russell, J. (2005a). Neutral atmospheric influences of the solar proton events in October-November 2003. Journal of Geophysical Research, 110, A09S27. doi:10.1029/2004JA01088.

    Article  Google Scholar 

  • Jackman, C. H., DeLand, M. T., Labow, G. J., Fleming, E. L., Weisenstein, D. K., Ko, M. K. W., Sinnhuber, M., Anderson, J., & Russell, J. M. (2005b). The influence of the several very large solar proton events in years 2000–2003 on the neutral middle atmosphere. Advances in Space Research, 35, 445–450.

    Article  Google Scholar 

  • Kazeminejad, S. (2009). Analysis of the middle atmosphere’s response to energetic particle events. Ph.D. thesis, University of Bremen.

    Google Scholar 

  • Kazil, J. (2002). The University of Bern atmospheric ion model: time-dependent ion modeling in the stratosphere, mesosphere and lower thermosphere. Ph.D. thesis, University of Bern.

    Google Scholar 

  • Kinnersley, J. S. (1996). The climatology of the stratospheric ‘THIN AIR’ model. Quarterly Journal of the Royal Meteorological Society, 122(529, Part A), 219–252.

    Google Scholar 

  • Kopp, E. (1996). Electron and ion densities. In W. Dieminger, G. K. Hartman & R. Leitinger (Eds.), The upper atmosphere, data analysis and interpretation (pp. 620–630). Berlin: Springer.

    Google Scholar 

  • Kopp, E., & Fritzenwallner, J. (1997). Chlorine and bromine ions in the D-region. Advances in Space Research, 20, 2111–2155.

    Article  Google Scholar 

  • Lary, D. J. (1997). Catalytic destruction of stratospheric ozone. Journal of Chemical Physics, 102, 21515–21526.

    Google Scholar 

  • López-Puertas, M., Funke, B., Gil-López, S., von Clarmann, T., Stiller, G. P., Höpfner, M., Kellmann, S., Fischer, H., & Jackman, C. H. (2005a). Observation of NOx enhancements and ozone depletion in the Northern and Southern Hemispheres after the October-November 2003 solar proton events. Journal of Geophysical Research, 110, A09S43. doi:10.1029/2005JA01105.

    Article  Google Scholar 

  • López-Puertas, M., Funke, B., Gil-López, S., von Clarmann, T., Stiller, G. P., Höpfner, M., Kellmann, S., Tsidu, G. M., Fischer, H., & Jackman, C. H. (2005b). HNO3, N2O5, and ClONO2 enhancements after the October-November 2003 solar proton events. Journal of Geophysical Research, 110, A09S44. doi:10.1029/2005JA011051.

    Article  Google Scholar 

  • López-Puertas, M., Funke, B., von Clarmann, T., Fischer, H., & Stiller, G. P. (2006). The stratospheric and mesospheric NOy in the 2002–2004 polar winters as measured by MIPAS/ENVISAT. Space Science Reviews, 125, 403–416. doi:10.1007/s11214-006-9073-2.

    Article  Google Scholar 

  • Porter, H. S., Jackman, C. H., & Green, A. E. S. (1976). Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. Journal of Chemical Physics, 65, 154–167.

    Article  Google Scholar 

  • Prather, M. J. (1986). Numerical advection by conservation of second-order moments. Journal of Geophysical Research, 91(D6), 6671–6681.

    Article  Google Scholar 

  • Ramarson, R. A. (1989). Modelisation locale, á une et trois dimensions des processus photochimiques de l’atmosphére moyenne. Ph.D. thesis, Université Paris VI.

    Google Scholar 

  • Randall, C. E., Siskind, D. E., & Bevilaqua, R. M. (2001). Stratospheric NOx enhancements in the southern hemisphere vortex in winter/spring of 2000. Geophysical Research Letters, 28, 2385–2388.

    Article  Google Scholar 

  • Rees, M. H. (1998). Physics and chemistry of the upper atmosphere. Cambridge: Cambridge University Press.

    Google Scholar 

  • Renard, J.-B., Blelly, P.-L., Bourgeois, Q., Chartier, M., Goutail, F., & Orsolini, Y. J. (2006). Origin of the January-April 2004 increase in stratospheric NO2 observed in the northern polar latitudes. Geophysical Research Letters, 33. doi:10.1029/2005GL025450.

  • Rohen, G. J., von Savigny, C., Sinnhuber, M., Eichmann, K.-U., Llewellyn, E. J., Kaiser, J. W., Jackman, C. H., Kallenrode, M.-B., Schroeter, J., Bovensmann, H., & Burrows, J. P. (2005). Ozone depletion during the solar proton events of Oct./Nov. 2003 as seen by SCIAMACHY. Journal of Geophysical Research, 110, A09S39.

    Article  Google Scholar 

  • Rusch, D. W., Gerard, J.-C., Solomon, S., Crutzen, P. J., & Reid, G. C. (1981). The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere, 1. Odd nitrogen. Planetary and Space Science, 29, 767–774.

    Article  Google Scholar 

  • Russell, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., Hesketh, W. D., Cicerone, R. J., Tuck, A. F., Frederick, J. E., Harries, J. E., & Crutzen, P. J. (1993). The HaLogen Occultation Experiment. Journal of Geophysical Research, 98, 10777–10797.

    Article  Google Scholar 

  • Sander, S. P., Friedl, R. R., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Keller-Rudek, H., Finlayson-Pitts, B. J., Wine, P., Huie, R. E., & Orkin, V. L. (2006). Chemical kinetics and photochemical data for use in atmospheric studies—evaluation number 15. JPL Publication, 06(2).

    Google Scholar 

  • Shine, K. P. (1987). The middle atmosphere in the absence of dynamical heat fluxes. Quarterly Journal of the Royal Meteorological Society, 113, 603–633.

    Article  Google Scholar 

  • Simmons, A., Uppala, S., Dee, D., & Kobayashi, S. (2006). ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, 110. Winter 2006/2007.

    Google Scholar 

  • Sinnhuber, B.-M., Weber, M., Amankwah, A., & Burrows, J. P. (2003a). Total ozone during the unusual Antarctic winter of 2002. Geophysical Research Letters, 30, 11. doi:10.1029/2002GL016798.

    Google Scholar 

  • Sinnhuber, B.-M., von der Gathen, P., Sinnhuber, M., Rex, M., König-Langlo, G., & Oltmans, S. J. (2006). Large decadal scale changes of polar ozone suggest solar influence. Atmospheric Chemistry and Physics, 6, 1835–1841.

    Article  Google Scholar 

  • Sinnhuber, M., Burrows, J. P., Künzi, K. F., Chipperfield, M. P., Jackman, C. H., Kallenrode, M.-B., & Quack, M. A. (2003b). A model study of the impact of magnetic field structure on atmospheric composition during solar proton events. Geophysical Research Letters, 30, L01818. doi:10.1029/2003GL017265.

    Article  Google Scholar 

  • Sinnhuber, M., Jackman, C. H., & Kallenrods, M.-B. (2003c). The impact of large solar proton events on ozone in the polar stratosphere—a model study. In C. Zerefos (Ed.), Proceedings quadrennial ozone symposium, 1–8 June 2004, Kos, Greece.

    Google Scholar 

  • Sinnhuber, M., Kazeminejad, S., & Wissing, J. M. (2011). Interannual variation of NOx from the lower thermosphere to the upper stratosphere in the years 1991–2005. Journal of Geophysical Research, 116. doi:10.1029/2010JA015825.

  • Siskind, D., Nedoluha, G., Randall, C., Fromm, M., & Russell III, J. M. (2000). An assessment of southern hemisphere stratospheric NOx enhancements due to transport from the upper atmosphere. Geophysical Research Letters, 27, 329–332.

    Article  Google Scholar 

  • Siskind, D. E., & Russel III, J. M. (1996). Coupling between middle and upper atmospheric NO: constraints from HALOE observations. Geophysical Research Letters, 23, 137–140.

    Article  Google Scholar 

  • Solomon, S., & Crutzen, P. J. (1981). Analysis of the August 1972 solar proton event including chlorine chemistry. Journal of Geophysical Research, 86, 1140–1146. doi:10.1029/JC086iC02p01140.

    Article  Google Scholar 

  • Solomon, S., Rusch, D. W., Gerard, J.-C., Reid, G. C., & Crutzen, P. J. (1981). The effect of particle precipitation events on th neutral and ion chemistry of the middle atmosphere II: odd hydrogen. Planetary and Space Science, 29, 885–892.

    Article  Google Scholar 

  • Solomon, S., Reid, G. C., Rusch, D. W., & Thomas, R. J. (1983). Mesospheric ozone depletion during the solar proton event of July 13, 1983, part II: comparison between theory and measurements. Geophysical Research Letters, 10, 257–260.

    Article  Google Scholar 

  • Swider, W., & Keneshea, T. J. (1973). Decrease of ozone and atomic oxygen in the lower mesosphere during a PCT event. Planetary and Space Science, 21, 1969–1973.

    Article  Google Scholar 

  • Verronen, P. T. (2006). Ionosphere-atmosphere interaction during solar proton events. Ph.D. thesis, University of Helsinki.

    Google Scholar 

  • Verronen, P. T., Funke, B., López-Puertas, M., Stiller, G. P., von Clarmann, T., Glatthor, N., Enell, C.-F., Turunen, E., & Tamminen, J. (2008). About the increase of HNO3 in the stratopause region during the Halloween 2003 solar proton event. Geophysical Research Letters, 35, L20809. doi:10.1029/2008GL035312.

    Article  Google Scholar 

  • Verronen, P. T., Rodger, C. J., Clilverd, M. A., & Wang, S. (2011). First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts. Journal of Geophysical Research, 116, D07307. doi:10.1029/2010JD014965.

    Article  Google Scholar 

  • Viggiano, A. A., Morris, R. A., & Doren, J. M. V. (1994). Ion chemistry of ClONO2 involving \(\mathrm{NO}_{3}^{-}\) core ions: a detection scheme for ClONO2 in the atmosphere. Journal of Geophysical Research, 99, 8221–8224.

    Article  Google Scholar 

  • von Clarmann, T., Glatthor, N., Höpfner, M., Kellmann, S., Ruhnke, R., Stiller, G. P., Fischer, H., Funke, H., Gil-López, S., & López-Puertas, M. (2005). Experimental evidence of perturbed odd hydrogen and chlorine chemistry after the October 2003 solar proton events. Journal of Geophysical Research, 110, A09S45. doi:10.1029/2005JA011053.

    Article  Google Scholar 

  • Winkler, H. (2007). Response of middle atmospheric ozone to solar proton events in a changing geomagnetic field. Ph.D. thesis, University of Bremen.

    Google Scholar 

  • Winkler, H., Sinnhuber, M., Notholt, J., Kallenrode, M.-B., Steinhilber, F., Vogt, J., Zieger, B., Glassmeier, K.-H., & Stadelmann, A. (2008). Modelling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long time scales. Journal of Geophysical Research, 113, D02302. doi:10.1029/2007JD008574.

    Article  Google Scholar 

  • Winkler, H., Kazeminejad, S., Sinnhuber, M., Kallenrode, M.-B., & Notholt, J. (2009). The conversion of mesospheric HCl into active chlorine during the solar proton event in July 2000 in the northern polar region. Journal of Geophysical Research, 114, D00I03. doi:10.1029/2008JD011587.

    Article  Google Scholar 

  • Winkler, H., Kazeminejad, S., Sinnhuber, M., Kallenrode, M.-B., & Notholt, J. (2011). Correction to “Conversion of mesospheric HCl into active chlorine during the solar proton event in July 2000 in the northern polar region”. Journal of Geophysical Research, 116, D17303. doi:10.1029/2011JD016274.

    Article  Google Scholar 

  • Wissing, J.-M., & Kallenrode, M.-B. (2009). Atmospheric Ionisation Module Osnabrück (AIMOS): A 3-D model to determine atmospheric ionization by energetic charged particles from different populations. Journal of Geophysical Research, 114, A06104. doi:10.1029/2008JA013884.

    Article  Google Scholar 

  • Wissing, J.-M., Kallenrode, M.-B., Wieters, N., Winkler, H., & Sinnhuber, M. (2010). Atmospheric Ionisation Module Osnabrück (AIMOS) 2: Total particle inventory in the October / November 2003 event and ozone. Journal of Geophysical Research, 115, A02308. doi:10.1029/2009JA014419.

    Article  Google Scholar 

  • Zipf, E. C., Espy, P. J., & Boyle, C. F. (1980). The excitation and collisional deactivation of metastable N(2P) atoms in auroras. Journal of Geophysical Research, 85, 687–694.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded within the framework of the priority program Climate and Weather of the Sun-Earth System CAWSES by the Deutsche Forschungsgemeinschaft as project SI-1088/1-3. The authors gratefully acknowledge the work of S. Kazeminejad, who is now at the German Space Agency DLR. M. Sinnhuber also gratefully acknowledges funding by the University of Bremen. MIPAS data were kindly provided by B. Funke, Istituto de Astrofisica de Andalucia, and G. Stiller, KIT. The authors would like to thank Bernd Funke for initiating and coordinating the Heppa intercomparison initiative, and U. Berger for providing the LIMA data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Sinnhuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sinnhuber, M., Wieters, N., Winkler, H. (2013). The Impact of Energetic Particle Precipitation on the Chemical Composition of the Middle Atmosphere: Measurements and Model Predictions. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_16

Download citation

Publish with us

Policies and ethics