Skip to main content

The Influence of Energetic Particles on the Chemistry of the Middle Atmosphere

  • Chapter

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Energetic particle precipitation (EPP) during solar and geomagnetic active periods causes chemical disturbances in the lower thermosphere and in the middle atmosphere. Additional HOx (H, OH, HO2) and NOx (N, NO, NO2) are produced in the middle atmosphere, and enhancements of NOx produced in these events can be transported to the winter stratosphere. These trace species take part in ozone chemistry and, by chemical-radiative coupling, the dynamical state in the middle atmosphere can be altered. There is evidence both from observations and from chemistry-climate models that the EPP induced signal in the middle atmosphere may then propagate into the troposphere. Thus particle precipitation could connect to possible climate effects. The first step in this functional chain is the impact of EPP on the chemical composition in the middle atmosphere and lower thermosphere, and the downward transport in the polar winter middle atmosphere. The general objective of this project was to assess quantitatively the chemical composition change in the middle atmosphere by combining model simulations and observations. The study relays mainly on the observations of the MIPAS instrument on the ENVISAT satellite, whose data set has been expanded in the context of this project by a newly developed retrieval of the gas H2O2, a reservoir for the members of the HOx family. Simulations have been carried out with the two chemical transport models CLaMS and KASIMA, which cover chemistry and transport effects in the stratosphere up to the mesosphere/lower thermosphere region. The impact on the global NOy budget and (the resulting) total ozone change are assessed in these studies. In addition, the ion reaction mechanism for the conversion of N2O5 to HNO3 based on positive ion chemistry was refined. The detailed comparison of model results and observation for the SPE 2003 showed that models can simulate the impact of EPP on ozone chemistry but deficiencies exist for some minor species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aplin, K., & McPheat, R. (2005). Absorption of infra-red radiation by atmospheric molecular cluster-ions. Journal of Atmospheric and Solar-Terrestrial Physics, 67(8–9), 775–783. doi:10.1016/j.jastp.2005.01.007. 1st General Meeting of the European-Geosciences-Union, Nice, France, Apr 25, 2004.

    Article  Google Scholar 

  • Austin, J., Garcia, R. R., Russell III, J. M., Solomon, S., & Tuck, A. F. (1986). On the atmospheric photochemistry of nitric acid. Journal of Geophysical Research, 91, 5477–5485.

    Article  Google Scholar 

  • Baumgaertner, A. J. G., Joeckel, P., & Bruehl, C. (2009). Energetic particle precipitation in ECHAM5/MESSy1-Part 1: downward transport of upper atmospheric NOx produced by low energy electrons. Atmospheric Chemistry and Physics, 9(8), 2729–2740.

    Article  Google Scholar 

  • Böhringer, H., Fahey, D. W., Fehsenfeld, F. C., & Ferguson, E. E. (1983). The role of ion-molecule reactions in the conversion of N2O5 to HNO3 in the stratosphere. Planetary and Space Science, 31, 185–191. doi:10.1016/0032-0633(83)90053-3.

    Article  Google Scholar 

  • Brasseur, G. P., & Solomon, S. (2005). Aeronomy of the middle atmosphere. Berlin: Springer.

    Google Scholar 

  • Callis, L., Baker, D., Natarajan, M., Blake, J., Mewaldt, R., Selesnick, R., & Cummings, J. (1996). A 2-D model simulation of downward transport of NOy into the stratosphere: effects on the 1994 austral spring O3 and NOy. Geophysical Research Letters, 23(15), 1905–1908.

    Article  Google Scholar 

  • Carli, B., Alpaslan, D., Carlotti, M., Castelli, E., Ceccherini, S., Dinelli, B. M., Dudhia, A., Flaud, J. M., Hoepfner, M., Jay, V., Magnani, L., Oelhaf, H., Payne, V., Piccolo, C., Prosperi, M., Raspollini, P., Remedios, J., Ridolfi, M., & Spang, R. (2004). First results of MIPAS/ENVISAT with operational level 2 code. Advances in Space Research, 33(7), 1012–1019.

    Article  Google Scholar 

  • de Zafra, R., & Smyshlyaev, S. (2001). On the formation of HNO3 in the Antarctic mid to upper stratosphere in winter. Journal of Geophysical Research, 106(D19), 23115–23125.

    Article  Google Scholar 

  • Engel, A., Mobius, T., Haase, H. P., Bonisch, H., Wetter, T., Schmidt, U., Levin, I., Reddmann, T., Oelhaf, H., Wetzel, G., Grunow, K., Huret, N., & Pirre, M. (2006). Observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003. Atmospheric Chemistry and Physics, 6, 267–282.

    Article  Google Scholar 

  • Fischer, H., & Oelhaf, H. (1996). Remote sensing of vertical profiles of atmospheric trace constituents with MIPAS limb-emission spectrometers. Applied Optics, 35(16), 2787–2796.

    Article  Google Scholar 

  • Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., Lopez-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., & Zander, R. (2008). MIPAS: an instrument for atmospheric and climate research. Atmospheric Chemistry and Physics, 8(8), 2151–2188.

    Article  Google Scholar 

  • Funke, B., Lopez-Puertas, M., von Clarmann, T., Stiller, G. P., Fischer, H., Glatthor, N., Grabowski, U., Hopfner, M., Kellmann, S., Kiefer, M., Linden, A., Tsidu, G. M., Milz, M., Steck, T., & Wang, D. Y. (2005). Retrieval of stratospheric nox from 5.3 and 6.2 μm nonlocal thermodynamic equilibrium emissions measured by Michelson interferometer for passive atmospheric sounding (MIPAS) on envisat. Journal of Geophysical Research. Atmospheres, 110(D9), D09302.

    Article  Google Scholar 

  • Funke, B., López-Puertas, M., Fischer, H., Stiller, G., von Clarmann, T., Wetzel, G., Carli, B., & Belotti, C. (2007). Comment on “origin of the January-April 2004 increase in stratospheric NO2 observed in northern polar latitudes” by Jean-Baptist Renard et al. Geophysical Research Letters, 34, 107813. doi:10.1029/2006GL027518.

    Article  Google Scholar 

  • Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., & Glatthor, N. (2008). Mesospheric N2O enhancements as observed by MIPAS on Envisat during the polar winters in 2002–2004. Atmospheric Chemistry and Physics, 8, 5787–5800.

    Article  Google Scholar 

  • Funke, B., Baumgaertner, A., Calisto, M., Egorova, T., Jackman, C. H., Kieser, J., Krivolutsky, A., López-Puertas, M., Marsh, D. R., Reddmann, T., Rozanov, E., Salmi, S.-M., Sinnhuber, M., Stiller, G. P., Verronen, P. T., Versick, S., von Clarmann, T., Vyushkova, T. Y., Wieters, N., & Wissing, J. M. (2011). Composition changes after the “halloween” solar proton event: the high-energy particle precipitation in the atmosphere (heppa) model versus MIPAS data intercomparison study. Atmospheric Chemistry and Physics Discussions, 11(3), 9407–9514. doi:10.5194/acpd-11-9407-2011.

    Article  Google Scholar 

  • Funke, B., Lopez-Puertas, M., Gil-Lopez, S., von Clarmann, T., Stiller, G., Fischer, H., & Kellmann, S. (2005). Downward transport of upper atmospheric NOx into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters. Journal of Geophysical Research, 110(D24). doi:10.1029/2005JD006463.

  • Grooß, J.-U., Konopka, P., & Müller, R. (2005). Ozone chemistry during the 2002 Antarctic vortex split. Journal of the Atmospheric Sciences, 62(3), 860–870.

    Article  Google Scholar 

  • Heaps, M. (1978). Parameterization of cosmic-ray ion-pair production-rate above 18 km. Planetary and Space Science, 26(6), 513–517.

    Article  Google Scholar 

  • Jackman, C., & McPeters, R. (2004). The effects of solar proton events on ozone and other constituents. Geophysical Monograph, 141, 305–319.

    Article  Google Scholar 

  • Jackman, C. H., DeLand, M. T., Labow, G. J., Fleming, E. L., Weisenstein, D. K., Ko, M. K. W., Sinnhuber, M., & Russell, J. M. (2005). Neutral atmospheric influences of the solar proton events in October-November 2003. Journal of Geophysical Research, 110(A9), A09S27.

    Article  Google Scholar 

  • Jackman, C. H., Marsh, D. R., Vitt, F. M., Roble, R. G., Randall, C. E., Bernath, P. F., Funke, B., López-Puertas, M., Versick, S., Stiller, G. P., Tylka, A. J., & Fleming, E. L. (2011). Northern hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmospheric Chemistry and Physics Discussion, 11(3), 7715–7755. doi:10.5194/acpd-11-7715-2011.

    Article  Google Scholar 

  • Jackman, C. H., Marsh, D. R., Vitt, F. M., Garcia, R. R., Fleming, E. L., Labow, G. J., Randall, C. E., Lopez-Puertas, M., Funke, B., von Clarmann, T., & Stiller, G. P. (2008). Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmospheric Chemistry and Physics, 8(3), 765–785.

    Article  Google Scholar 

  • Kawa, S. R., Kumer, J. B., Douglass, A. R., Roche, A. E., Smith, S. E., Taylor, F. W., & Allen, D. J. (1995). Missing chemistry of reactive nitrogen in the upper stratospheric polar winter. Geophysical Research Letters, 22, 2629–2632. doi:10.1029/95GL02336.

    Article  Google Scholar 

  • Khosrawi, F., Mueller, R., Proffitt, M. H., Ruhnke, R., Kirner, O., Joeckel, P., Grooss, J. U., Urban, J., Murtagh, D., & Nakajima, H. (2009). Evaluation of CLaMS, KASIMA and ECHAM5/MESSy1 simulations in the lower stratosphere using observations of Odin/SMR and ILAS/ILAS-II. Atmospheric Chemistry and Physics, 9(15), 5759–5783.

    Article  Google Scholar 

  • Klee, S., Winnewisser, M., Perrin, A., & Flaud, J.-M. (1999). Absolute line intensities for the ν 6 band of H2O2. Journal of Molecular Spectroscopy, 195, 154–161.

    Article  Google Scholar 

  • Konopka, P., Grooß, J. U., Günther, G., McKenna, D. S., Müller, R., Elkins, J. W., Fahey, D., & Popp, P. (2003). Weak impact of mixing on chlorine deactivation during SOLVE/THESEO2000: Lagrangian modeling (CLaMS) versus ER-2 in situ observations. Journal of Geophysical Research, 108, 8324. doi:10.1029/2001JD000876.

    Article  Google Scholar 

  • Konopka, P., Steinhorst, H.-M., Grooß, J.-U., Günther, G., Müller, R., Elkins, J. W., Jost, H.-J., Richard, E., Schmidt, U., Toon, G., & McKenna, D. S. (2004). Mixing and ozone loss in the 1999–2000 Arctic vortex: simulations with the 3-dimensional chemical Lagrangian model of the stratosphere (CLaMS). Journal of Geophysical Research, 109, D02315. doi:10.1029/2003JD003792.

    Article  Google Scholar 

  • Konopka, P., Günther, G., Müller, R., dos Santos, F. H. S., Schiller, C., Ravegnani, F., Ulanovsky, A., Schlager, H., Volk, C. M., Viciani, S., Pan, L. L., McKenna, D.-S., & Riese, M. (2007a). Contribution of mixing to upward transport across the tropical tropopause layer (TTL). Atmospheric Chemistry and Physics, 7(12), 3285–3308.

    Article  Google Scholar 

  • Konopka, P., Engel, A., Funke, B., Müller, R., Grooß, J.-U., Günther, G., Wetter, T., Stiller, G., von Clarmann, T., Glatthor, N., Oelhaf, H., Wetzel, G., López-Puertas, M., Pirre, M., Huret, N., & Riese, M. (2007b). Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings may outweigh the effect of halogens. Journal of Geophysical Research, 112, D05105. doi:10.1029/2006JD007064.

    Article  Google Scholar 

  • Kouker, W. (1993). Evaluation of dynamical parameters with a 3-D mechanistic model of the middle atmosphere. Journal of Geophysical Research, 98, 23165–23191.

    Article  Google Scholar 

  • Kouker, W., Offermann, D., Kull, V., Ruhnke, R., Reddmann, T., & Franzen, A. (1999). Streamers observed by the CRISTA experiment and simulated in the KASIMA model. Journal of Geophysical Research, 104, 16405–16418.

    Article  Google Scholar 

  • Lacoste-Francis, H. (Ed.) (2010). MIPAS observations of stratospheric and upper tropospheric trace gases: an overview: Vol. ESA SP-686. CD-ROM. ESA Publications Division, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands.

    Google Scholar 

  • Langematz, U., Grenfell, J., Matthes, K., Mieth, P., Kunze, M., Steil, B., & Bruhl, C. (2005). Chemical effects in 11-year solar cycle simulations with the Freie Universität Berlin climate middle atmosphere model with online chemistry (FUB-CMAM-CHEM). Geophysical Research Letters, 32(13). doi:10.1029/2005GL022686.

  • Lopez-Puertas, M., Funke, B., Gil-Lopez, S., von Clarmann, T., Stiller, G. P., Hopfner, M., Kellmann, S., Fischer, H., & Jackman, C. H. (2005a). Observation of nox enhancement and ozone depletion in the northern and southern hemispheres after the October-November 2003 solar proton events. Journal of Geophysical Research, 110(A9), A09S43.

    Article  Google Scholar 

  • Lopez-Puertas, M., Funke, B., Gil-Lopez, S., von Clarmann, T., Stiller, G. P., Hopfner, M., Kellmann, S., Tsidu, G. M., Fischer, H., & Jackman, C. H. (2005b). HNO3, N2O5, and ClONO2 enhancements after the October-November 2003 solar proton events. Journal of Geophysical Research, 110(A9), A09S44.

    Article  Google Scholar 

  • McKenna, D. S., Konopka, P., Grooß, J.-U., Günther, G., Müller, R., Spang, R., Offermann, D., & Orsolini, Y. (2002a). A new chemical Lagrangian model of the stratosphere (CLaMS): 1. Formulation of advection and mixing. Journal of Geophysical Research, 107(D16), 4309. doi:10.1029/2000JD000114.

    Article  Google Scholar 

  • McKenna, D. S., Grooß, J.-U., Günther, G., Konopka, P., Müller, R., Carver, G., & Sasano, Y. (2002b). A new chemical Lagrangian model of the stratosphere (CLaMS): 2. Formulation of chemistry scheme and initialization. Journal of Geophysical Research, 107(D15), 4256. doi:10.1029/2000JD000113.

    Article  Google Scholar 

  • Orsolini, Y. J., Manney, G. L., Santee, M. L., & Randall, C. E. (2005). An upper stratospheric layer of enhanced hno3 following exceptional solar storms. Geophysical Research Letters, 32(12), L12S01.

    Article  Google Scholar 

  • Perrin, A., Valentin, A., Flaud, J.-M., Camy-Peyret, C., Schriver, L., Schriver, A., & Arcas, P. (1995). The 7.9-μm band of hydrogen peroxide: line positions and intensities. Journal of Molecular Spectroscopy, 171, 358–373.

    Article  Google Scholar 

  • Randall, C., Siskind, D., & Bevilacqua, R. (2001). Stratospheric NOx enhancements in the southern hemisphere vortex in winter/spring 2000. Geophysical Research Letters, 28, 2385–2388.

    Article  Google Scholar 

  • Randall, C., Rusch, D., Bevilacqua, R., Hoppel, K., & Lumpe, J. (1998). Polar ozone and aerosol measurement (POAM) II stratospheric NO2, 1993–1996. Journal of Geophysical Research, 103(D21), 28361–28371.

    Article  Google Scholar 

  • Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., & Russell, J. M. (2007). Energetic particle precipitation effects on the southern hemisphere stratosphere in 1992–2005. Journal of Geophysical Research, 112(D11), 8308. doi:10.1029/2006JD007696.

    Article  Google Scholar 

  • Reddmann, T., Ruhnke, R., & Kouker, W. (1999). Use of coupled ozone fields in a 3-D circulation model of the middle atmosphere. Annales Geophysicae, 17, 415–429.

    Article  Google Scholar 

  • Reddmann, T., Ruhnke, R., & Kouker, W. (2001). Three-dimensional model simulations of SF6 with mesospheric chemistry. Journal of Geophysical Research, 106, 14525–14537.

    Article  Google Scholar 

  • Reddmann, T., Ruhnke, R., Versick, S., & Kouker, W. (2010). Modeling disturbed stratospheric chemistry during solar-induced NOx enhancements observed with MIPAS/ENVISAT, Journal of Geophysical Research, 115. doi:10.1029/2009JD012569.

  • Ridolfi, M., Carli, B., Carlotti, M., von Clarmann, T., Dinelli, B. M., Dudhia, A., Flaud, J. M., Hopfner, M., Morris, P. E., Raspollini, P., Stiller, G., & Wells, R. J. (2000). Optimized forward model and retrieval scheme for mipas near-real-time data processing. Applied Optics, 39(8), 1323–1340.

    Article  Google Scholar 

  • Rinsland, C. E. A. (1996). ATMOS measurements of H2O + 2CH4 and total reactive nitrogen in the November 1994 Antarctic stratosphere: dehydration and denitrification in the vortex. Geophysical Research Letters, 23, 2397–2400.

    Article  Google Scholar 

  • Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: theory and practice. In F. W. Taylor (Ed.), Series on atmospheric: Vol. 2. Oceanic and planetary physics (p. 238), Singapore: World Scientific.

    Google Scholar 

  • Rothman, L. S., Jacquemart, D., Barbe, A., Benner, D. C., Birk, M., Brown, L. R., Carleer, M. R., Chackerian Jr., C., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Flaud, J.-M., Gamache, R. R., Goldman, A., Hartmann, J.-M., Jucks, K. W., Maki, A. G., Mandin, J.-Y., Massie, S. T., Orphal, J., Perrin, A., Rinsland, C. P., Smith, M. A. H., Tennyson, J., Tolchenov, R. N., Toth, R. A., Vander Auwera, J., Varanasi, P., & Wagner, G. (2005). The HITRAN 2004 molecular spectroscopic database. Journal of Quantitative Spectroscopy & Radiative Transfer, 96, 139–204.

    Article  Google Scholar 

  • Rozanov, E., Callis, L., Schlesinger, M., Yang, F., Andronova, N., & Zubov, V. (2005). Atmospheric response to NOy source due to energetic electron precipitation. Geophysical Research Letters, 32(14). doi:10.1029/2005GL023041.

  • Ruhnke, R., Kouker, W., & Reddmann, T. (1999). The influence of the OH + NO2 + M reaction on the NOy partitioning in the late Arctic winter 1992/1993 as studied with KASIMA. Journal of Geophysical Research, 104, 3755–3772.

    Article  Google Scholar 

  • Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L. (2006). Chemical kinetics and photochemical data for use in atmospheric studies (JPL Publication 06-2).

    Google Scholar 

  • Siskind, D., Nedoluha, G., Randall, C., Fromm, M., & Russell III, J. (2000). An assessment of southern hemispheric stratospheric NOx enhancements due to transport from the upper atmosphere. Geophysical Research Letters, 27, 329–332.

    Article  Google Scholar 

  • Smith, A. K., Lopez-Puertas, M., Garcia-Comas, M., & Tukiainen, S. (2009). SABER observations of mesospheric ozone during NH late winter 2002–2009. Geophysical Research Letters, 36. doi:10.1029/2009GL040942.

  • Stiller, G. P. (Ed.) (2000). The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA). Wissenschaftliche Berichte: Vol. FZKA 6487. Forschungszentrum Karlsruhe.

    Google Scholar 

  • Stiller, G. P., Tsidu, G. M., von Clarmann, T., Glatthor, N., Hopfner, M., Kellmann, S., Linden, A., Ruhnke, R., Fischer, H., Lopez-Puertas, M., Funke, B., & Gil-Lopez, S. (2005). An enhanced HNO3 second maximum in the Antarctic midwinter upper stratosphere 2003. Journal of Geophysical Research, 110(D20), D20303.

    Article  Google Scholar 

  • Stiller, G. P., von Clarmann, T., Hoepfner, M., Glatthor, N., Grabowski, U., Kellmann, S., Kleinert, A., Linden, A., Milz, M., Reddmann, T., Steck, T., Fischer, H., Funke, B., Lopez-Puertas, M., & Engel, A. (2008). Global distribution of mean age of stratospheric air from MIPAS SF6 measurements. Atmospheric Chemistry and Physics, 8(3), 677–695.

    Article  Google Scholar 

  • Verronen, P. T., Seppala, A., Kyrola, E., Tamminen, J., Pickett, H. M., & Turunen, E. (2006). Production of odd hydrogen in the mesosphere during the January 2005 solar proton event. Geophysical Research Letters, 33(24). doi:10.1029/2006GL028115.

  • Verronen, P. T., Funke, B., Lopez-Puertas, M., Stiller, G. P., von Clarmann, T., Glatthor, N., Enell, C. F., Turunen, E., & Tamminen, J. (2008). About the increase of HNO3 in the stratopause region during the Halloween 2003 solar proton event. Geophysical Research Letters, 35(20). doi:10.1029/2008GL035312.

  • Versick, S. (2011). Ableitung von H 2 O 2 aus MIPAS/ENVISAT-Beobachtungen und Untersuchung der Wirkung von energetischen Teilchen auf den chemischen Zustand der mittleren Atmosphäre. Ph.D. thesis, Karlsruher Institut für Technologie.

    Google Scholar 

  • Versick, S., Stiller, G., von Clarmann, T., Reddmann, T., Glatthor, N., Grabowski, U., Hopfner, M., Kellmann, S., Kiefer, M., Linden, A., Ruhnke, R., & Fischer, H. (2011). Global stratospheric hydrogen peroxide distribution from mipas-envisat full resolution spectra compared to kasima model results. doi:10.5194/acp-12-4923-2012.

  • Vogel, B., Konopka, P., Grooß, J.-U., Müller, R., Funke, B., López-Puertas, M., Reddmann, T., Stiller, G., von Clarmann, T., & Riese, M. (2008). Model simulations of stratospheric ozone loss caused by enhanced mesospheric NO x during Arctic Winter 2003/2004. Atmospheric Chemistry and Physics, 8(17), 5279–5293.

    Article  Google Scholar 

  • von Clarmann, T., Glatthor, N., Hopfner, M., Kellmann, S., Ruhnke, R., Stiller, G. P., Fischer, H., Funke, B., Gil-Lopez, S., & Lopez-Puertas, M. (2005). Experimental evidence of perturbed odd hydrogen and chlorine chemistry after the October 2003 solar proton events. Journal of Geophysical Research, 110(A9), A09S45.

    Article  Google Scholar 

  • von Clarmann, T., Hoepfner, M., Kellmann, S., Linden, A., Chauhan, S., Funke, B., Grabowski, U., Glatthor, N., Kiefer, M., Schieferdecker, T., Stiller, G. P., & Versick, S. (2009). Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements. Atmospheric Measurement Techniques, 2(1), 159–175.

    Article  Google Scholar 

  • Wetzel, G., Bracher, A., Funke, B., Goutail, F., Hendrick, F., Lambert, J.-C., Mikuteit, S., Piccolo, C., Pirre, M., Bazureau, A., Belotti, C., Blumenstock, T., de Mazière, M., Fischer, H., Huret, N., Ionov, D., López-Puertas, M., Maucher, G., Oelhaf, H., Pommereau, J.-P., Ruhnke, R., Sinnhuber, M., Stiller, G., van Roozendael, M., & Zhang, G. (2007). Validation of MIPAS-ENVISAT NO2 operational data. Atmospheric Chemistry & Physics, 7, 3261–3284.

    Article  Google Scholar 

  • Wissing, J. M., & Kallenrode, M. B. (2009). Atmospheric Ionization Module Osnabruck (AIMOS): a 3-D model to determine atmospheric ionization by energetic charged particles from different populations. Journal of Geophysical Research, 114. doi:10.1029/2008JA013884.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Reddmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reddmann, T., Funke, B., Konopka, P., Stiller, G., Versick, S., Vogel, B. (2013). The Influence of Energetic Particles on the Chemistry of the Middle Atmosphere. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_15

Download citation

Publish with us

Policies and ethics