Skip to main content

Atmospheric Ionization Due to Precipitating Charged Particles

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 1603 Accesses

Abstract

Precipitating charged particles contribute to the natural variations in the Earth’s atmosphere such as ionization, electron density, and composition of e.g. NOx and Ozone. Precipitating solar energetic and magnetospheric particles show a highly dynamic behavior in space and time. We present a 3D ionization model considering the relevant particle species (electrons, protons, and alpha particles) as well as precipitation areas (polar cap and auroral oval): the Atmospheric Ionization Model OSnabrück AIMOS, and discuss some of the atmospheric consequences of precipitating particles. We present the limitations of direct comparisons between EISCAT and precipitating particles and give comparisons between incoherent scatter measurements and a combination of AIMOS and the HAMMONIA GCM to demonstrate the consistency in both methods.

With contributions from Jens Kieser, Hauke Schmidt, Miriam Sinnhuber, Holger Winkler, Nadine Wieters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostinelli, S., et al. (2003). Geant4: a simulation toolkit. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250–303.

    Article  Google Scholar 

  • Berger, M. J., Seltzer, S. M., & Maeda, K. (1970). Energy deposition by auroral electrons in the atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 32, 1015–1045.

    Article  Google Scholar 

  • Bhattacharya, Y., & Gerrard, A. J. (2009). Mesospheric winds and polar vortex motion. Atmospheric Chemistry and Physics Discussion, 9, 16549–16562.

    Article  Google Scholar 

  • Bornebusch, J. P., Wissing, J. M., & Kallenrode, M.-B. (2010). Solar particle precipitation into the polar atmosphere and their dependence on hemisphere and local time. Advances in Space Research, 45, 632–637. doi:10.1016/j.asr.2009.11.008.

    Article  Google Scholar 

  • Callis, L. B., et al. (1996a). Precipitating electrons: evidence for effects on mesospheric odd nitrogen. Geophysical Research Letters, 23, 1901–1904.

    Article  Google Scholar 

  • Callis, L. B., Baker, D. N., Natarajan, M., Blake, J. B., Mewaldt, R. A., Selesnick, R. S., & Cummings, J. R. (1996b). A 2-d model simulation of downward transport of noy into the stratosphere: effects on the austral spring o3 and noy. Geophysical Research Letters, 23, 1905–1908.

    Article  Google Scholar 

  • Callis, L. B., Natarajan, M., Evans, D. S., & Lambeth, J. D. (1998). Solar atmospheric coupling by electrons (solace): 1. Effects of the may 12, 1997 solar event on the middle atmosphere. Journal of Geophysical Research, 103, 28405–28419.

    Article  Google Scholar 

  • Crutzen, P. J., Isaksen, I. S. A., & Reid, G. C. (1975). Solar proton events: stratospheric sources of nitric oxide. Science, 189, 457–459.

    Article  Google Scholar 

  • Evans, D. S., & Greer, M. S. (2004). Polar orbiting environmental satellite, space environment monitor—2: Instrument descriptions and archive data documentation (Technical memorandum). Space Environ. Cent., NOAA. http://www.ngdc.noaa.gov/stp/NOAA/docs/SEM2v1.4b.pdf.

  • Fang, X., Randall, C. E., Lummerzheim, D., Solomon, S. C., Mills, M. J., Marsh, D. R., Jackman, C. H., Wang, W., & Lu, G. (2008). Electron impact ionization: a new parameterization for 100 ev to 1 mev electrons. Journal of Geophysical Research, 113, A09311. doi:10.1029/2008JA013384.

    Article  Google Scholar 

  • Farley, D. (1996). Incoherent scatter radar probing. In H. Kohl, R. Ruster & K. Schlegel (Eds.), Modern ionospheric science (pp. 415–439). Katlenburg-Lindau: European Geophysical Society Publications.

    Google Scholar 

  • Heath, D. F., Krueger, A. J., & Crutzen, P. J. (1977). Solar proton event: influence in stratospheric ozone. Science, 197, 886–889.

    Article  Google Scholar 

  • Jackman, C. H., McPeters, R. D., Labow, G. J., Fleming, E. L., Praderas, C. J., & Russell, J. M. (2001). Northern hemisphere atmospheric effects due to the July 2000 solar proton event. Geophysical Research Letters, 28, 1886–2883.

    Article  Google Scholar 

  • Jackman, C. H., DeLand, M. T., Labow, G. J., Flemming, E. L., Weisenstein, D. K., Ko, M. K. W., Sinnhuber, M., & Russell, J. M. (2005). Neutral atmospheric influences of the solar events in October–November 2003. Journal of Geophysical Research, 110, A09S27. doi:10.1029/2004JA010888.

    Article  Google Scholar 

  • Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U., & Simmons, A. J. (2007). Sensitivity of chemical tracers to meteorological parameters in the mozart-3 chemical transport model. Journal of Geophysical Research, 112. doi:10.1029/2006JD007879.

  • Leske, R. A., Mewaldt, R. A., Stone, E. C., & von Rosenvinge, T. T. (2001). Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station. Journal of Geophysical Research, 106, A08305.

    Article  Google Scholar 

  • Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., & Roeckner, E. (2006). The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the maecham5 model. Journal of Climate, 19(16), 3863–3881.

    Article  Google Scholar 

  • Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F., Solomon, S. C., & Matthes, K. (2007). Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 112, D23306. doi:10.1029/2006JD008306.

    Article  Google Scholar 

  • McPeters, R. D., & Jackman, C. H. (1985). The response of ozone to solar proton events during solar cycle 21: the observations. Journal of Geophysical Research, 90, 7945–7954.

    Article  Google Scholar 

  • Mewaldt, R. A., et al. (2005). Proton, helium, and electron spectra during the large solar particle events of October–November 2003. Journal of Geophysical Research, 110, A09S18. doi:10.1029/2005JA011038.

    Article  Google Scholar 

  • NASA (1996). GOES I-M DataBook. National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA, revision 1st ed. http://rsd.gsfc.nasa.gov/goes/text/goes.databook.html.

  • Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., & Russell III, J. M. (2007). Energetic particle precipitation effects on the southern hemisphere stratosphere in 1992–2005. Journal of Geophysical Research, 112, D08308. doi:10.1029/2006JD007696.

    Article  Google Scholar 

  • Roble, R. G., & Ridley, E. C. (1987). An auroral model for the ncar thermospheric general circulation model (tgcm). Annales Geophysicae, 5A, 369–382.

    Google Scholar 

  • Rohen, G., et al. (2005). Ozone depletion during the solar proton events of October/November 2003 as seen by sciamachy. Journal of Geophysical Research, 110, A09S39. doi:10.1029/2004JA010984.

    Article  Google Scholar 

  • Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., & Diehl, T. (2006). The hammonia chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and co2 doubling. Journal of Climate, 19, 3902–3931.

    Google Scholar 

  • Schröter, J., Heber, B., Steinhilber, F., & Kallenrode, M.-B. (2006). Energetic particles in the atmosphere: a Monte Carlo approach. Advances in Space Research, 37(8), 1597–1601.

    Article  Google Scholar 

  • Seppälä, A., Clilverd, M. A., & Rodger, C. J. (2007). Nox enhancements in the middle atmosphere during 2003–2004 polar winter: relative significance of solar proton events and the aurora as a source. Journal of Geophysical Research, 207. doi:10.1029/2006JD008326.

  • Sinnhuber, B.-M., Weber, M., Amankwah, A., & Burrows, J. P. (2003a). Total ozone during the unusual antarctic winter of 2002. Geophysical Research Letters, 30. doi:10.1029/2002GL016798.

  • Sinnhuber, M., Burrows, J. P., Chipperfield, M. P., Jackman, C. H., Kallenrode, M.-B., Kunzi, K. F., & Quack, M. (2003b). A model study of the impact of magnetic field structure on atmospheric composition during solar proton events. Geophysical Research Letters, 30. doi:10.1029/2003GL017265.

  • Verronen, P. T. (2006). Ionosphere-atmosphere interaction during solar proton events. Doctoral dissertation, Ph.D. thesis, University of Helsinki.

    Google Scholar 

  • Verronen, P. T., Turunen, E., Ulich, T., & Kyrölä, E. (2002). Modelling the effects of the October 1989 solar proton event on mesospheric odd nitrogen using a detailed ion and neutral chemistry model. Annales Geophysicae, 20, 1967–1976.

    Article  Google Scholar 

  • Winkler, H., Sinnhuber, M., Notholt, J., Kallenrode, M.-B., Steinhilber, F., Vogt, J., Zieger, B., Glassmeier, K.-H., & Stadelmann, A. (2008). Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long timescales. Journal of Geophysical Research, 113, D02302. doi:10.1029/2007JD008574.

    Article  Google Scholar 

  • Wissing, J. M., & Kallenrode, M.-B. (2009). Atmospheric ionization module osnabrück (aimos): a 3-d model to determine atmospheric ionization by energetic charged particles from different populations. Journal of Geophysical Research, 114, A06104. doi:10.1029/2008JA013884.

    Article  Google Scholar 

  • Wissing, J. M., Bornebusch, J. P., & Kallenrode, M.-B. (2008). Variation of energetic particle precipitation with local magnetic time. Advances in Space Research, 41, 1274–1278. doi:10.1016/j.asr.2007.05.063.

    Article  Google Scholar 

  • Wissing, J. M., Kallenrode, M.-B., Wieters, N., Winkler, H., & Sinnhuber, M. (2010). Atmospheric ionization module osnabrück (aimos): 2. Total particle inventory in the October–November 2003 event and ozone. Journal of Geophysical Research, 115, A02308. doi:10.1029/1009JA014419.

    Article  Google Scholar 

  • Wissing, J. M., Kallenrode, M.-B., Kieser, J., Schmidt, H., Rietveld, M. T., Strømme, A., & Erickson, P. J. (2011). Atmospheric ionization module osnabrück (aimos): 3. Comparison of electron density simulations by aimos/hammonia and incoherent scatter radar measurements. Journal of Geophysical Research, 116. doi:10.1029/2010JA016300.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May-Britt Kallenrode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wissing, J.M., Bornebusch, J.P., Kallenrode, MB. (2013). Atmospheric Ionization Due to Precipitating Charged Particles. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_13

Download citation

Publish with us

Policies and ethics