Skip to main content

Cyclic Stress – Fatigue

  • Chapter
  • First Online:
Mechanical Properties of Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 190))

Abstract

The most common failure that occurs in materials, such as metals, is caused by fatigue. The simplest way of looking at fatigue is by considering a specimen which is being repeatedly stressed under tension and compression. Not only tensile stresses that are repeatedly applied can cause fatigue failure, but any force which is acting in a reverse direction may ultimately result in such a failure. Loading a test specimen repeatedly by applying a force acting axially, torsionally or flexurally can induce fatigue failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W.M. Baldwin Jr., Residual Stresses in Metals, Proc. ASTM 49, 1949. p. 1

    Google Scholar 

  • N.E. Dowling, Mechanical Behavior of Materials, Second edn. (Prentice Hall, Upper Saddle River, 1999), p. 650

    Google Scholar 

  • N.E. Dowling, Mean Stress Effects in Stress-Life and Strain-Life Fatigue. Society of Automotive Engineers, Inc., 2004, F2004/51

    Google Scholar 

  • J. Goodman, Mechanics Applied to Engineering (Longmans Green, London, 1899)

    Google Scholar 

  • R.W. Hetzberg, Deformation and Mechanics of Engineering Materials (Wiley, New York, 1976), pp. 415–462. and 465-520

    Google Scholar 

  • R.E. Heywood, Designing Against Fatigue (Chapman & Hall, London, 1962). Quoted by Ciavarella

    Google Scholar 

  • P. Kuhn, H.F. Hardrath, An Engineering Method for Estimating Notch-Size Effect in Fatigue Tests on Steel. (NASA Tech Note 2805, 1952). Quoted by Ciavarella

    Google Scholar 

  • B.J. Lazan, A.A. Blatherwick, Fatigue Properties of Aluminum Alloys at Various Direct-Stress Ratios, Part II Extruded Alloys. (WADC Technical Report, 52-307, December 1952). Approved for public release

    Google Scholar 

  • S.S. Manson, Fatigue a Complex Subject-Some Simple Approximations. Exp. Mech. SESA 5, 193 (1965)

    Article  Google Scholar 

  • S.S. Manson, M.H. Hirschberg, Fatigue: An Interdisciplinary Approach (Syracuse University Press, Syracuse, 1964), p. 133

    Google Scholar 

  • G. Masing, Eigenspannungen und Verfestigung bei Messing, in Proceedings of the 2nd International Congress of Applied Mechanics, Zurich, 1926. Quoted by H. Zenner, F. Renner, in Int. J. Fatigue 24, 1255 (2002)

    Google Scholar 

  • J.D. Morrow, Cyclic Plastic Strain Energy and the Fatigue of Metals, in Internal Friction, Damping and Cyclic Plasticity. ASTM STP, 378 (American Society for Testing and Materials, Philadelphia, 1965)

    Google Scholar 

  • H. Neuber, Theory of Notch Stresses (Springer, Vienna, 1958). Quoted by Ciavarella

    Google Scholar 

  • N. Ono, Y. Nishimura, in Proceedings of the 12th International Conference on Fracture (Ottawa, CD ROM, 2009), pp. 1–10

    Google Scholar 

  • R.E. Peterson, Notch Sensitivity, in Metal Fatigue, ed. by G. Sines, J.L. Waisman (MacGraw-Hill, New York, 1959), pp. 293–306. Quoted by Ciavarella

    Google Scholar 

  • D.F. Socie, M.R. Mitchell, E.M. Caulfield, Fundamentals of Modern Fatigue Analysis. (Fracture Control Program, Report No. 26) (University of Illinois, Chicago, 1977)

    Google Scholar 

  • R.I. Stephens, Metal Fatigue in Engineering, 2nd edn. (Wiley-Interscience Publication, New York, 2001)

    Google Scholar 

  • R.I. Stephens, D.K. Chen, B.W. Horn, Fatigue Crack Growth with Negative Stress Ratio Following Single Overloads in 2024-T3 and 7075-T6 Aluminium-alloys, in Fatigue Crack Growth Under Spectrum Loads. ASTM STP 595 (ASTM, Philadelphia, 1976), pp. 27–40

    Chapter  Google Scholar 

  • S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  • K. Walker, The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum, in Effects of Environment and Complex Load History on Fatigue Life. ASTM STP, 462 (American Society for Testing and Materials, Philadelphia, 1970), p. 1

    Chapter  Google Scholar 

  • H.Q. Xue, E. Bayraktar, C. Bathias, J. Achiev. Mater. Manufac. Eng. 18, 251 (2006)

    Google Scholar 

  • G.T. Yahr, Fatigue Design Curves For 6061-T6 Aluminum, Oak Ridge National Laboratory, U.S. Department of Energy under Contract No. DE-AC05-84OR21400 (1993)

    Google Scholar 

Further References

  • B. Atzori, P. Lazzarin, R. Tovo, Österreichische Ingenieur-und Architekten- Zeitschrift 137, 556 (1992)

    Google Scholar 

  • O.H. Basquin, Proc. ASTM, 10, 625 (1910) quoted from W. Cui, J. Mar. Sci. Technol. 7, 43 (2002)

    Google Scholar 

  • C. Bathias, L. Drouillac, P. Le Francois, Int. J. Fatigue 23, S143 (2001)

    Article  Google Scholar 

  • C.A. Berg, M. Salama, Fibre Sci. Technol. 6, 125 (1973)

    Article  Google Scholar 

  • S.K. Bhaumik, R. Rangaraju, M.A. Venkataswamy, T.A. Bhaskaran, M.A. Parameswara, Eng. Fail. Anal. 9, 255 (2002)

    Article  Google Scholar 

  • V.I. Bol’shakov, V.S. Zoteev, L.G. Orlov and M.A, Tylkin, Translated from Metallovedenie i Termicheskaya Orabotka Metallov (2), 45 (1974)

    Google Scholar 

  • L.P. Borrego, L.M. Abreu, J.M. Costa, J.M. Ferreira, Eng. Fail. Anal. 11, 715 (2004)

    Article  Google Scholar 

  • D. Brandolisio, G. Poelman, G. De Corte, J. Symynck, M. Juwet, F. De Bal, Rotating Bending Machine for High Cycle Fatigue Testing, March 26, 2009

    Google Scholar 

  • F.P. Brennan, Int. J. Fatigue 16, 351 (1994)

    Article  Google Scholar 

  • M.W. Brown, D.K. Suker, C.H. Wang, Fatigue Fract. Eng. Mater. Struct. 19, 323 (1996)

    Article  Google Scholar 

  • D.A. Carpinteri, A. Spagnoli, S. Vantadori, Fatigue Fract. Eng. Mater. Struct. 25, 619 (2002)

    Article  Google Scholar 

  • M.D. Chaprin, H. Miyata, T. Tagawa, T. Miyata, M. Fujioka, Mater. Sci. Eng. A 381, 331 (2004)

    Google Scholar 

  • M. Ciavarella, G. Meneghetti, Int. J. Fatigue 26, 289 (2004)

    Article  Google Scholar 

  • W. Cui, J. Mar. Sci. Technol. 7, 43 (2002)

    Article  Google Scholar 

  • A.A. Dabayeh, T.H. Topper, Int. J. Fatigue 17, 261 (1995)

    Article  Google Scholar 

  • N.E. Dowling, Fatigue Fract. Eng. Mater. Struct. 32, 1004 (2009)

    Article  Google Scholar 

  • W. Elber, ASTM STP 559, 45 (1974)

    Google Scholar 

  • C.E. Feltner, C. Laird, Acta Met. 15, 1621 (1967)

    Article  Google Scholar 

  • P.J.E. Forsyth, Nature 171, 172 (1953)

    Article  Google Scholar 

  • M. de Freitas, F. Romeiro, M. da Fonte, Anales de Mecanica de la Fractura 2, 641 (2006)

    Google Scholar 

  • Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi, Scr. Mater. 46, 157 (2002)

    Article  Google Scholar 

  • S. Ganesh, S. Raman, K.A. Padmanabhan, Int. J. Fatigue 18, 71 (1996)

    Article  Google Scholar 

  • Yu-kui Gao, Xiang-bin Li, Qing-xiang Yang, M. Yao, Mater. Lett. 61, 466 (2007)

    Article  Google Scholar 

  • W. Geary, Int. J. Fatigue 14, 377 (1992)

    Article  Google Scholar 

  • K. Genel, M. Demirkol, Int. J. Fatigue 21, 207 (1999)

    Article  Google Scholar 

  • W.Z. Gerber, Z. Bayer Archit. Ing. Ver. 6, 101 (1874)

    Google Scholar 

  • A. Glage, A. Weidner, T. Richter, P. Trubitz, H. Biermann, European Symposium on Martensitic Transformations, ESOMAT 2009, 05007 (2009)

    Google Scholar 

  • K. Gopinath, A.K. Gogia, S.V. Kamat, R. Balamuralikrishnan, U. Ramamurty, Acta Mater. 57, 3450 (2009)

    Article  Google Scholar 

  • A.A. Griffith, Philos. Trans. R. Soc. Lond. A221, 153 (1921)

    Google Scholar 

  • Li Guobin, Wu Jianjun, J. Yanfei, Li Guiyun, J. Mater. Process. Technol. 100, 63 (2000)

    Article  Google Scholar 

  • G. Hammersley, L.A. Hackel, F. Harris, Opt. Lasers Eng. 34, 327 (2000)

    Article  Google Scholar 

  • X. Huang, T. Moan, W. Cui, Int. J. Fatigue 30, 2 (2008)

    Article  Google Scholar 

  • J.W. Jones, H. Mayer, J.V. Lasecki, J.E. Allison, Int. J. Fatigue 28, 1566 (2006)

    Article  MATH  Google Scholar 

  • L. Junek, J. Bystriansky, L. Vlcek, B. Strnadel, Trans., SMiRT 19, Toronto, August 2007, Paper # G05/5, p. 1

    Google Scholar 

  • K. Kanazawa, S. Nishijima, J. Soc. Mater. Sci. 46, 1396 (1997)

    Article  Google Scholar 

  • J.M. Larsen, B.D. Worth, C.G. Annis Jr., F.K. Haake, Int. J. Fract. 80, 237 (1996)

    Article  Google Scholar 

  • P. Lazzarin, R. Tovo, G. Meneghetti, Int. J. Fatigue 19, 647 (1997)

    Article  Google Scholar 

  • B.A. Lerch, S.L. Draper, J.M. Pereira, Met. Mater. Trans. A 33A, 3871 (2002)

    Article  Google Scholar 

  • N. Limodin, Y. Verreman, T.N. Tarfa, Fatigue Fract. Eng. Mater. Struct. 26, 811 (2003)

    Article  Google Scholar 

  • Y. Liu, S. Mahadevan, Eng. Fract. Mech. 76, 2317 (2009)

    Article  Google Scholar 

  • S.P. Lynch, Mater. Sci. Eng. A 468, 74 (2007)

    Article  Google Scholar 

  • S.M. Marco, W.L. Starkey, Trans. ASME 76, 627 (1954)

    Google Scholar 

  • I. Marines, X. Bin, C. Bathias, Int. J. Fatigue 25, 1101 (2003a)

    Article  Google Scholar 

  • I. Marines, G. Dominguez, G. Baudry, J.-F. Vittori, S. Rathery, J.-P. Doucet, C. Bathias, Int. J. Fatigue 25, 1037 (2003b)

    Article  Google Scholar 

  • C. Menzemer, T.S. Srivatsan, Mater. Sci. Eng. A271, 188 (1999)

    Google Scholar 

  • K.J. Miller, J. Strain Anal. 5, 185 (1970)

    Article  Google Scholar 

  • M.A. Miner, J. Appl. Mech., Trans. ASME, 12, A159 (1945)

    Google Scholar 

  • Y. Murakami, Y. Tazunoki, T. Endo, Metall. Trans. A 15A, 2029 (1984)

    Google Scholar 

  • Y. Murakami, T. Namoto, T. Ueda, Fatigue Fract. Eng. Mater. Struct. 22, 581 (1999)

    Article  Google Scholar 

  • M. Nakajima, M. Akita, Y. Uematsu, K. Tokaji, Proc. Eng. 2, 323 (2009)

    Article  Google Scholar 

  • T. Nicholas, J.R. Zuiker, Int. J. Fracture. 80, 219 (1996)

    Article  Google Scholar 

  • E.S. Nikolin, G.V. Karpenko, Mater. Sci. 3, 487 (1967) [Fiziko-Khimicheskaya Mekhanika Materialov, 3, 667 (1967)]

    Article  Google Scholar 

  • D.W. Norwich, A. Fasching, J. Mater. Eng. Perform. 18, 558 (2009)

    Article  Google Scholar 

  • D. Novovic, R.C. Dewes, D.K. Aspinwall, W. Voice, P. Bowen, Int. J. Mach. Manufac. 44, 125 (2004)

    Article  Google Scholar 

  • J.H. Ong, Int. J. Fatigue 15, 213 (1993)

    Article  Google Scholar 

  • A. Palmgren, ZVDI 68, 339 (1924)

    Google Scholar 

  • A. Plumtree, H.A. Abdel-Raouf, Int. J. Fatigue 23, 799 (2001)

    Article  Google Scholar 

  • J. Polák, J. Man, K. Obrtlík, Int. J. Fatigue 25, 1027 (2003)

    Article  Google Scholar 

  • J. Polák, J. Man, T. Vystavěl, M. Petrenec, Mater. Sci. Eng. A 517, 204 (2009)

    Article  Google Scholar 

  • B. Pyttel, D. Schwerdt, C. Berger, Int. J. Fatigue 33, 49 (2011)

    Article  Google Scholar 

  • T. Sakai, B. Lian, M. Takeda, K. Shiozawa, N. Oguma, Y. Ochi, M. Nakajima, T. Nakamura, Int. J. Fatigue 32, 497 (2010)

    Article  Google Scholar 

  • G. Salerno, R. Magnabosco, C. de Moura Neto, Int. J. Fatigue 29, 829 (2007)

    Article  Google Scholar 

  • C.S. Shin, S.H. Hsu, Int. J. Fatigue 15, 181 (1993)

    Article  Google Scholar 

  • F.S. Silva, Int. J. Fatigue 29, 1757 (2007)

    Article  MATH  Google Scholar 

  • G.M. Sinclair, ASTM Proc. 52, 743 (1952)

    Google Scholar 

  • M. Skorupa, Fatigue Fract. Eng. Mater. Struct. 21, 987 (1998)

    Article  Google Scholar 

  • K.N. Smith, P. Watson, T.H. Topper, A stress–strain function for the fatigue of metals. J. Mater. JMLSA 57, 67 (1970)

    Google Scholar 

  • O.V. Sosnin, A.V. Gromova, Yu.F. Ivanov, S.V. Konovalov, V.E. Gromov, E.V. Kozlov, Int. J. Fatigue 27, 1186 (2005)

    Article  Google Scholar 

  • C.A. Stubbington, P.J.E. Forsyth, Acta Met. 14, 5 (1966)

    Article  Google Scholar 

  • D. Thevenet, N. Lautrou, J.Y. Cognard, PAMM Proc. Appl. Math. Mech. 8, 10243 (2008)

    Article  Google Scholar 

  • A.W. Thompson, W.A. Backofen, Acta Met. 19, 597 (1971)

    Article  Google Scholar 

  • T.H. Topper, M.T. Tu, Int. J. Fatigue 7, 159 (1985)

    Article  Google Scholar 

  • M.A.S. Torres, H.J.C. Voorwald, Int. J. Fatigue 24, 877 (2002)

    Article  Google Scholar 

  • V.T. Troshchenko, L.A. Khamaza, Strength Mater. 42, 647 (2010)

    Article  Google Scholar 

  • B.I. Verkin, N.M. Grinberg, V.A. Serdyuk, L.F. Yakovenko, Mater. Sci. Eng. 58, 145 (1983)

    Article  Google Scholar 

  • A. Vinogradov, S. Hashimoto, V.I. Kopylov, Mater. Sci. Eng. A355, 277 (2003)

    Google Scholar 

  • C. Vishnevsky, J.F. Wallace, Fatigue of Cast Steels Part I – A study of the notch effect and of the specimen design and loading on the fatigue properties of cast steel, Steel Foundry Research Foundation, Ohio, April, 1967. Published and Distributed by Steel Founders’ Society of America Westview Towers, 21010 Center Ridge Road Rocky River, Ohio 44 116

    Google Scholar 

  • G.M. Vyletel, J.E. Allison, D.C. van Aken, Met. Mater. Trans. A 26A, 3143 (1995)

    Article  Google Scholar 

  • D. Wagner, N. Ranc, C. Bathias, P.C. Paris, Fatigue Fract. Eng. Mater. Struct. 33, 11 (2009)

    Google Scholar 

  • G.W.J. Waldron, Acta Met. 13, 897 (1965)

    Article  Google Scholar 

  • J.F. Wallace, A.M. Said, R&D Center Laboratory, Technical Report 13100, Improvement in the Fatigue Behavior of Tank Track Pins, U.S. Army Tank-Automotive Command Research and Development Center, Warre ,Michigan 48090, Aug 1985

    Google Scholar 

  • Z. Wang, T. Nian, D. Ryding, T.M. Kuzay, Nuclear Instr. Method. Phys. Res. A 347, 651 (1994)

    Article  Google Scholar 

  • T. Wehner, A. Fatemi, Int. J. Fatigue 13, 241 (1991)

    Article  Google Scholar 

  • W. Yao, K. Xia, Y. Gu, Int. J. Fatigue 17, 245 (1995)

    Article  Google Scholar 

  • K. Yatsushiro, M. Sano, K, Yamanashi, M. Kuramoto, From JCPDS – International Centre for Diffraction Data 2003, Adv. X-ray Anal. 46, 92 (2003)

    Google Scholar 

  • H. Zenner, F. Renner, Int. J. Fatigue 24, 1255 (2002)

    Article  Google Scholar 

  • P. Zhang, J. Lindemann, Scr. Mater. 52, 485 (2005)

    Article  Google Scholar 

  • X. Zhu, A. Shyam, J.W. Jones, H. Mayer, J.V. Lasecki, J.E. Allison, Int. J. Fatigue 28, 1566 (2006)

    Article  MATH  Google Scholar 

  • V. Zitounis, P.E. Irving, Int. J. Fatigue 29, 108 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pelleg, J. (2013). Cyclic Stress – Fatigue. In: Mechanical Properties of Materials. Solid Mechanics and Its Applications, vol 190. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4342-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4342-7_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4341-0

  • Online ISBN: 978-94-007-4342-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics