Skip to main content

What Can Networks Do for You?

  • Chapter
  • First Online:
New Frontiers of Network Analysis in Systems Biology

Abstract

This chapter aims at demonstrating the utility of network approaches in classification and outlier detection tasks in the context of stem cell biology and related fields. With modern high-through-put methods it has now become easier and cheaper to accurately measure thousands of features on a genome-wide scale than to define a low number of markers that can be tested, for example with low throughput RT-PCR assays. Typically the number of potential markers exceeds the number of experiments by several orders of magnitude. Therefore the significance – let alone mechanistic involvement – of each possible feature cannot be guaranteed from the data alone. Fortunately, easy-to-use implementations of many powerful network based algorithms have been made freely available so one can readily employ these advanced algorithms on new high-content datasets.

We will exemplify how network information and structure can be used to improve the prediction of biological phenotypes, and discuss methodological considerations pertinent to enabling reliable and biologically meaningful inferences from in silico network studies. We will touch upon difficulties inferring “true” (i.e. mechanistic) networks from biological data and note that, from a practical standpoint, in silico networks need not to fully reflect observable biological phenomena for real-world predictability and utility. We have found that a particularly successful strategy is to use statistical learning theory as a stringent framework for comparative evaluation of alternative network methods. This pragmatic and evolutionary approach can be adopted in several biological realms and makes optimal use of todays sophisticated network modeling methodologies. We observe that only such a rigorous workflow can guarantee reproducibility of network-based findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller F-J, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP et al (2011) A bioinformatic assay for pluripotency in human cells. Nat Methods 8:315–317

    Article  PubMed  Google Scholar 

  2. Schöler HR, Hatzopoulos AK, Balling R, Suzuki N, Gruss P (1989) A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J 8(9):2543–2550

    PubMed  Google Scholar 

  3. Schöler HR, Balling R, Hatzopoulos AK, Suzuki N, Gruss P (1989) Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J 8(9):2551–2557

    PubMed  Google Scholar 

  4. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  5. Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H et al (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461(7264):649–653

    Article  PubMed  CAS  Google Scholar 

  6. Andrews PW, Fenderson B, Hakomori S (1987) Human embryonal carcinoma cells and their differentiation in culture. Int J Androl 10(1):95–104

    Article  PubMed  CAS  Google Scholar 

  7. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE et al (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11(10):733–739

    Article  PubMed  CAS  Google Scholar 

  8. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5(1):111–123

    Article  PubMed  CAS  Google Scholar 

  9. Newman AM, Cooper JB (2010) Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell 7(2):258–262

    Article  PubMed  CAS  Google Scholar 

  10. Christodoulou C, Longmire TA, Shen SS, Bourdon A, Sommer CA, Gadue P et al (2011) Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes. J Clin Invest 121(6):2313–2325

    Article  PubMed  CAS  Google Scholar 

  11. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD et al (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144(3):439–452

    Article  PubMed  CAS  Google Scholar 

  12. Leek JT, Storey JD (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 3(9):1724–1735

    Article  PubMed  CAS  Google Scholar 

  13. Boulting GL, Kiskinis E, Croft GF, Amoroso MW, Oakley DH, Wainger BJ et al (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 29(3):279–286

    Article  PubMed  CAS  Google Scholar 

  14. Morizane A, Doi D, Kikuchi T, Nishimura K, Takahashi J (2011) Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J Neurosci Res 89(2):117–126

    Article  PubMed  CAS  Google Scholar 

  15. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  PubMed  CAS  Google Scholar 

  16. Thomson M, Liu SJ, Zou L-N, Smith Z, Meissner A, Ramanathan S (2011) Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 45(6):875–889

    Article  Google Scholar 

  17. Kim H, Lee G, Ganat Y, Papapetrou EP, Lipchina I, Socci ND et al (2011) miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 8(6):695–706

    Article  PubMed  CAS  Google Scholar 

  18. Kalman R (1959) On the general theory of control systems. IRE Trans Autom Control 4:481–492

    Google Scholar 

  19. Liu Y-Y, Slotine J-J, Barabási A-L (2011) Controllability of complex networks. Nature 473:167–173

    Article  PubMed  CAS  Google Scholar 

  20. Stumpf MPH, Thorne T, de Silva E, Stewart R, An HJ, Lappe M et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci USA 105(19):6959–6964

    Article  PubMed  CAS  Google Scholar 

  21. Deane CM, Salwiński Ł, Xenarios I, Eisenberg D (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1(5):349–356

    Article  PubMed  CAS  Google Scholar 

  22. Huang H, Bader JS (2009) Precision and recall estimates for two-hybrid screens. Bioinformatics 25(3):372–378

    Article  PubMed  CAS  Google Scholar 

  23. Ulitsky I, Shamir R (2007) Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 1:8

    Article  PubMed  Google Scholar 

  24. Müller F-J, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C et al (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455(7211):401–405

    Article  PubMed  Google Scholar 

  25. Markowetz F, Troyanskaya OG (2007) Computational identification of cellular networks and pathways. Mol Biosyst 3(7):478–482

    Article  PubMed  CAS  Google Scholar 

  26. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Google Scholar 

  27. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci USA 107(14):6286–6291

    Article  PubMed  CAS  Google Scholar 

  28. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2(4):333–344

    Article  PubMed  CAS  Google Scholar 

  29. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  Google Scholar 

  30. MacArthur BD, Ma’ayan A, Lemischka IR (2009) Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 10(10):672–681

    PubMed  CAS  Google Scholar 

  31. Joshi A, De Smet R, Marchal K, Van de Peer Y, Michoel T (2009) Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics 25(4):7

    Article  Google Scholar 

  32. Brunet J-P, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 101(12):4164–4169

    Article  PubMed  CAS  Google Scholar 

  33. Fiedler B, Schuppert A (2008) Local identification of hybrid models with tree structure. IMA J Appl Math 73:449–476

    Article  Google Scholar 

  34. Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M, Jaenisch R et al (2010) Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7(2):249–257

    Article  PubMed  CAS  Google Scholar 

  35. Pascual-Montano A, Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Marqui RD (2006) bioNMF: a versatile tool for non-negative matrix factorization in biology. BMC Bioinformatics 7:366

    Article  PubMed  Google Scholar 

  36. Kim PM, Tidor B (2003) Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Res 13(7):1706–1718

    Article  PubMed  CAS  Google Scholar 

  37. Gao Y, Church G (2005) Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 21(21):3970–3975

    Article  PubMed  CAS  Google Scholar 

  38. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600

    Article  PubMed  CAS  Google Scholar 

  39. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298(5593):601–604

    Article  PubMed  CAS  Google Scholar 

  40. Phillips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK et al (2000) The genetic program of hematopoietic stem cells. Science 288(5471):1635–1640

    Article  PubMed  CAS  Google Scholar 

  41. Loring JF, Porter JG, Seilhammer J, Kaser MR, Wesselschmidt R (2001) A gene expression profile of embryonic stem cells and embryonic stem cell-derived neurons. Restor Neurol Neurosci 18(2-3):81–88

    PubMed  CAS  Google Scholar 

  42. Terskikh AV, Easterday MC, Li L, Hood L, Kornblum HI, Geschwind DH et al (2001) From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci USA 98(14):7934–7939

    Article  PubMed  CAS  Google Scholar 

  43. Fortunel NO (2003) Comment on “ ‘stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature” [I]. Science 302(5644):393b–393

    Article  Google Scholar 

  44. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag Ser 62(11):559–572

    Article  Google Scholar 

  45. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  PubMed  CAS  Google Scholar 

  46. Müller F-J, Goldmann J, Löser P, Loring JF (2010) A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell 6(5):412–414

    Article  PubMed  Google Scholar 

  47. Som A, Harder C, Greber B, Siatkowski M, Paudel Y, Warsow G et al (2010) The PluriNetWork: an electronic representation of the network underlying pluripotency in mouse, and its applications. PLoS One 5(12):e15165

    Article  PubMed  Google Scholar 

  48. Tax D, Muller K-R (2004) A consistency-based model selection for one-class classification 2004. In: ICPR 2004. Proceedings of the 17th international conference on pattern recognition, vol 3, Cambridge, UK, CA, pp 363–366

    Google Scholar 

  49. Schuppert A (1999) Extrapolability of structured hybrid models: a key to the optimization of complex processes. In: Bernold F, Konrad G, Juergen S (eds) Proceedings of the international conference on differential equations, Berlin, Germany, 1–7 August 1999. World Scientific Publishing, Singapore, pp 1135–1151

    Google Scholar 

  50. Schuppert A (2011) Efficient reengineering of Meso-scale topologies for functional networks in biomedical applications. J Math Ind 1:6

    Article  Google Scholar 

  51. Schuppert A, Burghaus R, Von Törne C, Schwers S, Stropp U, Kallabis H (2006) Method for identifying predictive biomarkers from patient data. Patent WO/2007/07/9875

    Google Scholar 

Download references

Acknowledgements

We thank Qiong Lin, Michael Lenz and Jeanne Loring for valuable discussions. FJM is supported by an Else-Kröner Fresenius Stiftung fellowship. BMS is supported by Bayer Technology Services GmbH and the Deutsche Forschungsgemeinschaft [GSC 111].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard M. Schuldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schuldt, B.M., Müller, FJ., Schuppert, A.A. (2012). What Can Networks Do for You?. In: Ma'ayan, A., MacArthur, B. (eds) New Frontiers of Network Analysis in Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4330-4_10

Download citation

Publish with us

Policies and ethics