Skip to main content

Abstract

The ability of bacteria to transport proteins across their membranes is integral for interaction with their environment. Distinct families of secretion systems mediate bacterial protein secretion. The human pathogen, Coxiella burnetii encodes components of the Sec-dependent secretion pathway, an export system used for type IV pilus assembly, and a complete type IV secretion system. The type IVB secretion system in C. burnetii is functionally analogous to the Legionella pneumophila Dot/Icm secretion system. Both L. pneumophila and C. burnetii require the Dot/Icm apparatus for intracellular replication. The Dot/Icm secretion system facilitates the translocation of many bacterial effector proteins across the bacterial and vacuole membranes to enter the host cytoplasm where the effector proteins mediate their specific activities to manipulate a variety of host cell processes. Several studies have identified cohorts of C. burnetii Dot/Icm effector proteins that are predicted to be involved in modulation of host cell functions. This chapter focuses specifically on these secretion systems and the role they may play during C. burnetii replication in eukaryotic host cells.

The first two authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman E, Segal G (2008) The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 190:1985–1996

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    Article  PubMed  CAS  Google Scholar 

  • Bachman MA, Swanson MS (2001) RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 40:1201–1214

    Article  PubMed  CAS  Google Scholar 

  • Beare PA, Unsworth N, Andoh M et al (2009) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77:642–656

    Article  PubMed  CAS  Google Scholar 

  • Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7:7–19

    Article  PubMed  CAS  Google Scholar 

  • Beron W, Gutierrez MG, Rabinovitch M et al (2002) Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect Immun 70:5816–5821

    Article  PubMed  CAS  Google Scholar 

  • Burstein D, Zusman T, Degtyar E et al (2009) Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5:e1000508

    Article  PubMed  Google Scholar 

  • Cambronne ED, Roy CR (2006) Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic 7:929–939

    Article  PubMed  CAS  Google Scholar 

  • Cambronne ED, Roy CR (2007) The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog 3:e188

    Article  PubMed  Google Scholar 

  • Carlsson F, Joshi SA, Rangell L et al (2009) Polar localization of virulence-related Esx-1 secretion in mycobacteria. PLoS Pathog 5:e1000285

    Article  PubMed  Google Scholar 

  • Cazalet C, Rusniok C, Bruggemann H et al (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Charpentier X, Oswald E (2004) Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol 186:5486–5495

    Article  PubMed  CAS  Google Scholar 

  • Chen J, de Felipe KS, Clarke M et al (2004) Legionella effectors that promote nonlytic release from protozoa. Science 303:1358–1361

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Banga S, Mertens K et al (2010) Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A 107:21755–27160

    Article  PubMed  CAS  Google Scholar 

  • Chien M, Morozova I, Shi S et al (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968

    Article  PubMed  CAS  Google Scholar 

  • Christie PJ, Vogel JP (2000) Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8:354–360

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13:581–588

    Article  PubMed  CAS  Google Scholar 

  • Coers J, Kagan JC, Matthews M et al (2000) Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol Microbiol 38:719–736

    Article  PubMed  CAS  Google Scholar 

  • Coleman SA, Fischer ER, Howe D et al (2004) Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 186:7344–7352

    Article  PubMed  CAS  Google Scholar 

  • De Buck E, Lammertyn E, Anne J (2008) The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16:442–453

    Article  PubMed  Google Scholar 

  • de Felipe KS, Pampou S, Jovanovic OS et al (2005) Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187:7716–7726

    Article  PubMed  Google Scholar 

  • de Felipe KS, Glover RT, Charpentier X et al (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4:e1000117

    Article  PubMed  Google Scholar 

  • Dumenil G, Montminy TP, Tang M et al (2004) IcmR-regulated membrane insertion and efflux by the Legionella pneumophila IcmQ protein. J Biol Chem 279:4686–4695

    Article  PubMed  CAS  Google Scholar 

  • Ensminger AW, Isberg RR (2009) Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr Opin Microbiol 12:67–73

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Segal G (2004) A specific genomic location within the icm/dot pathogenesis region of different Legionella species encodes functionally similar but nonhomologous virulence proteins. Infect Immun 72:4503–4511

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Zusman T, Hagag S et al (2005) Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system. Proc Natl Acad Sci U S A 102:12206–12211

    Article  PubMed  CAS  Google Scholar 

  • Ferhat M, Atlan D, Vianney A et al (2009) The TolC protein of Legionella pneumophila plays a major role in multi-drug resistance and the early steps of host invasion. PLoS One 4:e7732

    Article  PubMed  Google Scholar 

  • Gal-Mor O, Segal G (2003) Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185:4908–4919

    Article  PubMed  CAS  Google Scholar 

  • Hager AJ, Bolton DL, Pelletier MR et al (2006) Type IV pili-mediated secretion modulates Francisella virulence. Mol Microbiol 62:227–237

    Article  PubMed  CAS  Google Scholar 

  • Heinzen RA, Scidmore MA, Rockey DD et al (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64:796–809

    PubMed  CAS  Google Scholar 

  • Hobbs M, Mattick JS (1993) Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 10:233–243

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA (1983) The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158:2108–2126

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA, Silverstein SC (1980) Legionnaires’ disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest 66:441–450

    Article  PubMed  CAS  Google Scholar 

  • Howe D, Heinzen RA (2006) Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol 8:496–507

    Article  PubMed  CAS  Google Scholar 

  • Howe D, Melnicakova J, Barak I et al (2003a) Fusogenicity of the Coxiella burnetii parasitophorous vacuole. Ann N Y Acad Sci 990:556–562

    Article  PubMed  Google Scholar 

  • Howe D, Melnicakova J, Barak I et al (2003b) Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cell Microbiol 5:469–480

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Boyd D, Amyot WM et al (2010) The E Block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol 13:227–245

    Article  PubMed  Google Scholar 

  • Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  PubMed  CAS  Google Scholar 

  • Jain S, van Ulsen P, Benz I et al (2006) Polar localization of the autotransporter family of large bacterial virulence proteins. J Bacteriol 188:4841–4850

    Article  PubMed  CAS  Google Scholar 

  • Jaumouille V, Francetic O, Sansonetti PJ et al (2008) Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J 27:447–457

    Article  PubMed  CAS  Google Scholar 

  • Kagan JC, Roy CR (2002) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4:945–954

    Article  PubMed  CAS  Google Scholar 

  • Krall L, Wiedemann U, Unsin G et al (2002) Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99:11405–11410

    Article  PubMed  CAS  Google Scholar 

  • Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395

    Article  PubMed  Google Scholar 

  • Lima T, Auchincloss AH, Coudert E et al (2009) HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res 37:D471–D478

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Conover GM, Isberg RR (2008) Legionella pneumophila EnhC is required for efficient replication in tumour necrosis factor alpha-stimulated macrophages. Cell Microbiol 10:1906–1923

    Article  PubMed  CAS  Google Scholar 

  • Luhrmann A, Roy CR (2007) Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 75:5282–5289

    Article  PubMed  CAS  Google Scholar 

  • Luhrmann A, Nogueira CV, Carey KL et al (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 107(44):18997–19001

    Article  PubMed  CAS  Google Scholar 

  • Lynch D, Fieser N, Gloggler K et al (2003) The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219:241–248

    Article  PubMed  CAS  Google Scholar 

  • Madariaga MG, Rezai K, Trenholme GM et al (2003) Q fever: a biological weapon in your backyard. Lancet Infect Dis 3:709–721

    Article  PubMed  Google Scholar 

  • Marra A, Blander SJ, Horwitz MA et al (1992) Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci U S A 89:9607–9611

    Article  PubMed  CAS  Google Scholar 

  • McCaul TF, Williams JC (1981) Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol 147:1063–1076

    PubMed  CAS  Google Scholar 

  • Melnicakova J, Lukacova M, Howe D et al (2003) Identification of Coxiella burnetii RpoS-dependent promoters. Ann N Y Acad Sci 990:591–595

    Article  PubMed  CAS  Google Scholar 

  • Morgan JK, Luedtke BE, Shaw EI (2010a) Polar localization of the Coxiella burnetii type IVB secretion system. FEMS Microbiol Lett 305:177–183

    Article  PubMed  CAS  Google Scholar 

  • Morgan JK, Luedtke BE, Thompson HA et al (2010b) Coxiella burnetii type IVB secretion system region I genes are expressed early during the infection of host cells. FEMS Microbiol Lett 311(1):61–69

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Ito K (2001) The sec protein-translocation pathway. Trends Microbiol 9:494–500

    Article  PubMed  CAS  Google Scholar 

  • Mosavi LK, Cammett TJ, Desrosiers DC et al (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448

    Article  PubMed  CAS  Google Scholar 

  • Nagai H, Cambronne ED, Kagan JC et al (2005) A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 102:826–831

    Article  PubMed  CAS  Google Scholar 

  • Nakano N, Kubori T, Kinoshita M et al (2010) Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog 6(10):e1001129

    Article  PubMed  Google Scholar 

  • Nash TW, Libby DM, Horwitz MA (1984) Interaction between the legionnaires’ disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest 74:771–782

    Article  PubMed  CAS  Google Scholar 

  • Newton HJ, Ang DK, van Driel IR et al (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298

    Article  PubMed  CAS  Google Scholar 

  • Ninio S, Zuckman-Cholon DM, Cambronne ED et al (2005) The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol Microbiol 55:912–926

    Article  PubMed  CAS  Google Scholar 

  • Nogueira CV, Lindsten T, Jamieson AM et al (2009) Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 5:e1000478

    Article  PubMed  Google Scholar 

  • Ogata H, Renesto P, Audic S et al (2005) The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol 3:e248

    Article  PubMed  Google Scholar 

  • Pan X, Luhrmann A, Satoh A et al (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:1651–1654

    Article  PubMed  CAS  Google Scholar 

  • Rasis M, Segal G (2009) The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol 72:995–1010

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhury S, Farelli JD, Montminy TP et al (2009) Structure and function of interacting IcmR-IcmQ domains from a type IVb secretion system in Legionella pneumophila. Structure 17:590–601

    Article  PubMed  CAS  Google Scholar 

  • Rikihisa Y, Lin M (2010) Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr Opin Microbiol 13:59–66

    Article  PubMed  CAS  Google Scholar 

  • Roman MJ, Crissman HA, Samsonoff WA et al (1991) Analysis of Coxiella burnetii isolates in cell culture and the expression of parasite-specific antigens on the host membrane surface. Acta Virol 35:503–510

    PubMed  CAS  Google Scholar 

  • Rossier O, Cianciotto NP (2005) The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. Infect Immun 73:2020–2032

    Article  PubMed  CAS  Google Scholar 

  • Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183

    Article  PubMed  CAS  Google Scholar 

  • Samoilis G, Aivaliotis M, Vranakis I et al (2010) Proteomic screening for possible effector molecules secreted by the obligate intracellular pathogen Coxiella burnetii. J Proteome Res 9:1619–1626

    Article  PubMed  CAS  Google Scholar 

  • Sauvonnet N, Vignon G, Pugsley AP et al (2000) Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J 19:2221–2228

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Shuman HA (1999) Possible origin of the Legionella pneumophila virulence genes and their relation to Coxiella burnetii. Mol Microbiol 33:669–670

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95:1669–1674

    Article  PubMed  CAS  Google Scholar 

  • Seshadri R, Samuel JE (2001) Characterization of a stress-induced alternate sigma factor, RpoS, of Coxiella burnetii and its expression during the development cycle. Infect Immun 69:4874–4883

    Article  PubMed  CAS  Google Scholar 

  • Seshadri R, Paulsen IT, Eisen JA et al (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100:5455–5460

    Article  PubMed  CAS  Google Scholar 

  • Sexton JA, Vogel JP (2002) Type IVB secretion by intracellular pathogens. Traffic 3:178–185

    Article  PubMed  CAS  Google Scholar 

  • Shi C, Forsbach-Birk V, Marre R et al (2006) The Legionella pneumophila global regulatory protein LetA affects DotA and Mip. Int J Med Microbiol 296:15–24

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Roy CR (2008) Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 10:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Sory MP, Cornelis GR (1994) Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 14:583–594

    Article  PubMed  CAS  Google Scholar 

  • Swanson MS, Isberg RR (1995) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63:3609–3620

    PubMed  CAS  Google Scholar 

  • Thanabalu T, Koronakis E, Hughes C et al (1998) Substrate-induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17:6487–6496

    Article  PubMed  CAS  Google Scholar 

  • Thieme F, Koebnik R, Bekel T et al (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium xanthomonas campestris pv. Vesicatoria revealed by the complete genome sequence. J Bacteriol 187:7254–7266

    Article  PubMed  CAS  Google Scholar 

  • Vincent CD, Friedman JR, Jeong KC et al (2006) Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 62:1278–1291

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Andrews HL, Wong SK et al (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873–876

    Article  PubMed  CAS  Google Scholar 

  • Voth DE, Heinzen RA (2007) Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol 9:829–840

    Article  PubMed  CAS  Google Scholar 

  • Voth DE, Howe D, Heinzen RA (2007) Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun 75:4263–4271

    Article  PubMed  CAS  Google Scholar 

  • Voth DE, Howe D, Beare PA et al (2009) The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol 191:4232–4242

    Article  PubMed  CAS  Google Scholar 

  • Voulhoux R, Ball G, Ize B et al (2001) Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20:6735–6741

    Article  PubMed  CAS  Google Scholar 

  • Zamboni DS, McGrath S, Rabinovitch M et al (2003) Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol Microbiol 49:965–976

    Article  PubMed  CAS  Google Scholar 

  • Zuckman DM, Hung JB, Roy CR (1999) Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth. Mol Microbiol 32:990–1001

    Article  PubMed  CAS  Google Scholar 

  • Zusman T, Yerushalmi G, Segal G (2003) Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect Immun 71:3714–3723

    Article  PubMed  CAS  Google Scholar 

  • Zusman T, Aloni G, Halperin E et al (2007) The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 63:1508–1523

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McDonough, J.A., Newton, H.J., Roy, C.R. (2012). Coxiella burnetii Secretion Systems. In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_9

Download citation

Publish with us

Policies and ethics