Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

Abstract

Coxiella burnetii infection is frequently unrecognized or misdiagnosed, as symptoms generally mimic an influenza-like illness. However, the disease (Q fever) may result in chronic infection, usually manifesting as potentially fatal endocarditis. The development of a chronic fatigue-like sequela may also occur. Infected ruminants are the major reservoir for infection in humans, primarily through exposure to birth products or aerosols that transmit the bacterium over wide regions. A vaccine against C. burnetii infection has been in use in Australia for abattoir and agricultural workers for many years. The possibility of adverse reactions in those with previous exposure to the agent has prevented its use elsewhere. Subunit vaccines, utilizing chemical extraction of components thought to cause adverse reactions, are in development, but none are yet licensed. Others have sought to combine immunogenic peptides with or without selected lipopolysaccharide components to produce a vaccine without the possibility of adverse reactions. Selected immunogenic proteins have been shown to induce both humoral and cellular immune responses. Although current diagnosis of infection relies on serological testing, the presentation of specific antibody occurs 7–15 days following the onset of symptoms, delaying treatment that may result in prolonged morbidity. PCR detection of DNA to specific C. burnetii antigens in the blood is possible early in infection, but PCR may become negative when PII IgG antibodies appear. PCR is useful for early diagnosis when Q fever is suspected, as in large epidemics, and shortens the delay in the identification of Q fever endocarditis. Others have combined PCR with ELISA or other methods to increase the ability to detect infection at any stage. The search for new diagnostic reagents and vaccines has utilized new methods for discovery of immunoreactive proteins. DNA analysis of the heterogeneity of C. burnetii isolates has led to a greater understanding of the diversity of isolates and a means to determine whether there is a correlation between strain and disease severity. 2-D SDS PAGE of immunogenic proteins reactive with human or animal infection sera and mass spectrometric analysis of specific secreted or outer membrane proteins have identified candidate antigens. Microarrays have allowed the analysis of peptide libraries of open reading frames to evaluate the immunogenicity of complete genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackland JR, Worswick DA, Marmion BP (1994) Vaccine prophylaxis of Q fever. A follow-up study of the efficacy of Q-Vax (CSL) 1985–1990. Med J Aust 160:704–708

    PubMed  CAS  Google Scholar 

  • Andoh M, Zhang G, Russell-Lodrigue KE, Shive HR, Weeks BR, Samuel JE (2007) T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect Immun 75:3245–3255

    PubMed  CAS  Google Scholar 

  • Arricau-Bouvery N, Souriau A, Bodier C, Dufour P, Rousset E, Rodolakis A (2005) Effect of vaccination with phase I and phase II Coxiella burnetii vaccines in pregnant goats. Vaccine 23:4392–4402

    PubMed  CAS  Google Scholar 

  • Arricau-Bouvery N, Hauck Y, Bejaoui A, Frangoulidis D, Bodier CC, Souriau A, Meyer H, Neubauer H, Rodolakis A, Vergnaud G (2006) Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. BMC Microbiol 6:38–51

    PubMed  Google Scholar 

  • Baca OG, Paretsky D (1983) Q fever and Coxiella burnetii: a model for host-parasite interactions. Microbiol Rev 47:127–149

    PubMed  CAS  Google Scholar 

  • Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF, Heinzen RA (2006) Genetic diversity of the Q fever agent. Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol 188:2309–2324

    PubMed  CAS  Google Scholar 

  • Beare PA, Chen C, Bouman T, Pablo J, Unal B, Cockrell DC, Brown WC, Barbian KD, Porcella SF, Samuel JE, Felgner PL, Heinzen RA (2008) Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin Vaccine Immunol 15:1771–1779

    PubMed  CAS  Google Scholar 

  • Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BW, Kupko JJ III, Porcella SF, Samuel JE, Heinzen RA (2009) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77:642–656

    PubMed  CAS  Google Scholar 

  • Benenson AS (1959) Q fever vaccine: efficacy and present status. In: Smadel JE (ed) Walter Reed Army Institute of Medical Science, Publ No 6th edn. US Government Printing Office, Washington, DC, p 47

    Google Scholar 

  • Bengtson IA (1941) Complement fixation in “Q” fever. Proc Soc Exp Biol Med 46:665

    CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    PubMed  CAS  Google Scholar 

  • Bilberstein EL, Riemann HP, Franti CE, Behymer DE, Ruppanner R, Bushnell R, Crenshaw G (1977) Vaccination of dairy cattle against Q fever (Coxiella burnetii): results of field trials. Am J Vet Res 38:189–193

    Google Scholar 

  • Bildfell RJ, Thomson GW, Haines DM, McEwen BJ, Smart N (2000) Coxiella burnetii infection is associated with placentitis in cases of bovine abortion. J Vet Diagn Invest 12:419–425

    PubMed  CAS  Google Scholar 

  • Brennan RE, Russell K, Zhang G, Samuel JE (2004) Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect Immun 72:6666–6675

    PubMed  CAS  Google Scholar 

  • Brooks DL, Ermel RW, Franti CE, Ruppanner R, Behymer DE, Williams JC (1986) Q fever vaccination of sheep: challenge of immunity in ewes. Am J Vet Res 47:1235–1238

    PubMed  CAS  Google Scholar 

  • Brown GL (1973) Clinical aspects of “Q” fever. Postgrad Med J 49:539–541

    PubMed  CAS  Google Scholar 

  • Burnet FM, Freeman M (1937) Experimental studies on the virus of “Q” fever. Med J Aust 2:299–305

    Google Scholar 

  • Carrieri MP, Tissot-Dupont H, Rey D, Brousse P, Renard H, Obadia Y, Raoult D (2002) Investigation of a slaughterhouse-related outbreak of Q fever in the French Alps. Eur J Clin Microbiol Infect Dis 21:17–21

    PubMed  CAS  Google Scholar 

  • Chen C, Bouman TJ, Beare PA, Mertens K, Zhang GQ, Russell-Lodrique KE, Hogaboam JP, Peters B, Felgner PL, Brown WC, Heinzen RA, Hendrix LR, Samuel JE (2009) A systematic approach to evaluate humoral and cellular immune responses to Coxiella burnetii antigens. Clin Microbiol Infect 15:156–157

    PubMed  Google Scholar 

  • Chen C, Dow C, Wang P, Sidney J, Read A, Harmsen A, Samuel JE, Peters B (2011) Identification of CD4+ T cell epitopes in C. burnetii antigens targeted by antibody responses. PLoS One 6:e17712

    PubMed  CAS  Google Scholar 

  • Coleman SA, Fischer ER, Cockrell DC, Voth DE, Howe D, Mead DJ, Samuel JE, Heinzen RA (2007) Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect Immun 75:290–298

    PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Ghigo E, Raoult D, Capo C, Mege JL (2002) IFN-gamma-induced apoptosis and microbicidal activity in monocytes harboring the intracellular bacterium Coxiella burnetii require membrane TNF and homotypic cell adherence. J Immunol 169:6309–6315

    PubMed  CAS  Google Scholar 

  • Denison AM, Massung RF, Thompson HA (2007a) Analysis of the O-antigen biosynthesis regions of phase II isolates of Coxiella burnetii. FEMS Microbiol Lett 267:102–107

    PubMed  CAS  Google Scholar 

  • Denison AM, Thompson HA, Massung RF (2007b) IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates. BMC Microbiol 7:91–98

    PubMed  Google Scholar 

  • Deringer JR, Chen C, Samuel JE, Brown WC (2011) Immunoreactive Coxiella burnetii Nine Mile proteins separated by 2D electrophoresis and identified by tandem mass spectrometry. Microbiology 157:526–542

    PubMed  CAS  Google Scholar 

  • Derrick EH (1937) “Q” fever, a new entity: clinical features, diagnosis and laboratory investigation. Med J Aust 2:281–299

    Google Scholar 

  • Dilbeck PM, McElwain TF (1994) Immunohistochemical detection of Coxiella burnetii in formalin-fixed placentas. J Vet Diagn Invest 6:125–127

    PubMed  CAS  Google Scholar 

  • Domingues P, Palkovic P, Toman R (2002) Analysis of phospholipids from Coxiella burnetii by fast atom bombardment mass spectrometry. A rapid method for differentiation of virulent phase I and low virulent phase II cells. Acta Virol 46:121–124

    PubMed  CAS  Google Scholar 

  • Dupont HT, Thirion X, Raoult D (1994) Q fever serology: cut off determination for microimmunofluorescence. Clin Diagn Lab Immunol 1:189–196

    PubMed  CAS  Google Scholar 

  • Engelhard VH (1994) Structure of peptides associated with class I and class II MHC molecules. Annu Rev Immunol 12:181–207

    PubMed  CAS  Google Scholar 

  • Enserink M (2010) Infectious diseases. Questions abound in Q-fever explosion in the Netherlands. Science 327:266–277

    CAS  Google Scholar 

  • Fenollar F, Fournier PE, Raoult D (2004) Molecular detection of Coxiella burnetii in the sera of patients with Q fever endocarditis or vascular infections. J Clin Microbiol 42:4919–4924

    PubMed  CAS  Google Scholar 

  • Fernandes I, Rousset E, Dufour P, Sidi-Boumedine K, Cupo A, Thiery R, Duquesne V (2009) Evaluation of the recombinant heat shock protein B (HspB) of Coxiella burnetii as a potential antigen for immunodiagnostic of Q fever in goats. Vet Microbiol 134:300–304

    PubMed  CAS  Google Scholar 

  • Field PR, Santiago A, Chan SW, Patel DB, Dickeson D, Mitchell JL, Devine PL, Murphy AM (2002) Evaluation of a novel commercial enzyme-linked immunosorbent assay detecting Coxiella burnetii-specific immunoglobulin G for Q fever prevaccination screening and diagnosis. J Clin Mirobiol 40:3526–3529

    CAS  Google Scholar 

  • Fishbein DB, Raoult D (1992) A cluster of Coxiella burnetii infections associated with exposure to vaccinated goats and their unpasteurized dairy products. Am J Tropic Med Hyg 47:35–40

    CAS  Google Scholar 

  • Flores-Ramirez G, Toman R, Sekyova Z, Skultety L (2009) In silico prediction and identification of outer membrane proteins and lipoproteins from Coxiella burnetii by the mass spectrometry techniques. Clin Microbiol Infect 15:196–197

    PubMed  CAS  Google Scholar 

  • Fournier PE, Casalta JP, Habib G, Messana T, Raoult D (1996) Modification of the diagnostic criteria proposed by the Duke Endocarditis Service to permit improved diagnosis of Q fever endocoarditis. Am J Med 100:629–633

    PubMed  CAS  Google Scholar 

  • Fournier P-E, Raoult D (2003) Comparison of PCR and serology assays for early diagnosis of acute Q fever. J Clin Microbiol 41:5094–5098

    PubMed  CAS  Google Scholar 

  • Frangoulidis D, Schropfer E, Al Dahouk S, Tomaso H, Meyer H (2006) Comparison of four commercially available assays for the detection of IgM phase II antibodies to Coxiella burnetii in the diagnosis of acute Q fever. Ann N Y Acad Sci 1078:561–562

    PubMed  Google Scholar 

  • Frankel D, Richet H, Renvoise A, Raoult D (2011) Q fever in France, 1985–2009. Emerg Infect Dis 17:350–356

    PubMed  Google Scholar 

  • Fries LF, Waag DM, Williams JC (1993) Safety and immunogenicity in human volunteers of a choloform-methanol residue vaccine for Q fever. Infect Immun 61:1251–1258

    PubMed  CAS  Google Scholar 

  • Geddes AM (1983) Q fever. Br Med J 287:927–928

    CAS  Google Scholar 

  • Genig VA (1968) A live vaccine1/M-44 against Q-fever for oral use. J Hyg Epidemiol Microbiol Immunol 12:265–273

    PubMed  CAS  Google Scholar 

  • Glazunova O, Roux V, Freylikman O, Sekeyova Z, Fournous G, Tyczka J, Tokarevich N, Kovacova E, Marrie TJ, Raoult D (2005) Coxiella burnetii genotyping. Emerg Infect Dis 11:1211–1217

    PubMed  CAS  Google Scholar 

  • Guatteo R, Beaudeau F, Joly A, Seegers H (2007) Performances of an ELISA applied to serum and milk for the detection of antibodies to Coxiella burnetii in dairy cattle. Revue Med Vet 158:250–252

    Google Scholar 

  • Hackstadt T (1986) Antigenic variation in the phase I lipopolysaccharide of Coxiella burnetii isolates. Infect Immun 52:337–340

    PubMed  CAS  Google Scholar 

  • Hellenbrand W, Breuer T, Petersen L (2001) Changing epidemiology of Q fever in Germany, 1947–1999. Emerg Infect Dis 7:789–796

    PubMed  CAS  Google Scholar 

  • Hendrix LR, Samuel JE, Mallavia LP (1991) Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J Gen Microbiol 137:269–276

    PubMed  CAS  Google Scholar 

  • Hendrix LR, Mallavia LP, Samuel JE (1993) Cloning and sequencing of Coxiella burnetii outer membrane protein gene com1. Infect Immun 61:470–477

    PubMed  CAS  Google Scholar 

  • Hernychova L, Toman R, Ciampor F, Hubalek M, Vackova J, Macela A, Skultety L (2008) Detection and identification of Coxiella burnetii based on the mass spectrometric analyses of the extracted proteins. Anal Chem 80:7097–7104

    PubMed  CAS  Google Scholar 

  • Hoover TA, Culp DW, Vodkin MH, Williams JC, Thompson HA (2002) Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (Crazy), of the Coxiella burnetii Nine Mile strain. Infect Immun 70:6726–6733

    PubMed  CAS  Google Scholar 

  • Hoover TA, Vodkin MH, Williams JC (1992) A Coxiella burnetii repeated DNA element resembling a bacterial insertion sequence. J Bacteriol 174:5540–5548

    PubMed  CAS  Google Scholar 

  • Howe D, Barrows LF, Lindstrom NM, Heinzen RA (2002) Nitric oxide inhibits Coxiella burnetii replication and parasitophorous vacuole maturation. Infect Immun 70:5140–5147

    PubMed  CAS  Google Scholar 

  • Izzo AA, Marmion BP, Hackstadt T (1991) Analysis of the cells involved in the lymphoproliferative response to Coxiella burnetii antigens. Clin Exp Immunol 85:98–108

    PubMed  CAS  Google Scholar 

  • Jager C, Willems H, Thiele D, Baljer G (1998) Molecular characterization of Coxiella burnetii isolates. Epidemiol Infect 120:157–164

    PubMed  CAS  Google Scholar 

  • Jensen TK, Montgomery DL, Jaeger PT, Lindhardt T, Agerholm JS, Bille-Hansen V, Boye M (2007) Application of fluorescent in situ hybridization for demonstration of Coxiella burnetii in placentas from ruminant abortions. APMIS 115:347–353

    PubMed  CAS  Google Scholar 

  • Johnson JW, Eddy GA, Pederson CE Jr (1976) Biologic properties of the M-44 strain of Coxiella burnetii. J Infect Dis 133:334–338

    PubMed  CAS  Google Scholar 

  • Johnson JW, McLeod CG, Stookey JL, Higbee GA, Pedersen CE Jr (1977) Lesions in guinea pigs infected with Coxiella burnetii strain M-44. J Infect Dis 135:995–998

    PubMed  CAS  Google Scholar 

  • Kazar J, El-Najdawi E, Brezina R, Schramek S (1977) Search for correlates of resistance to virulent challenge in mice immunized with Coxiella burnetii. Acta Virol 21:422–430

    PubMed  CAS  Google Scholar 

  • Kazar J, Brezina R, Palanova A, Turda B, Schramek S (1982) Immunogenicity and reactogenicity of Q fever chemovaccine in persons professionally exposed to Q fever in Czechoslovakia. Bull World Health Organ 60:389–394

    PubMed  CAS  Google Scholar 

  • Kazar J, Votruba D, Propper P, Schramek S (1986) Onset and duration of immunity in guinea pigs and mice induced with different Q fever vaccines. Acta Virol 30:499–506

    PubMed  CAS  Google Scholar 

  • Klaassen CHW, Nabuurs-Franssen MH, Tilburg JJHC, Hamans MAWM, Horrevorts AM (2009) Multigenotype Q fever outbreak, the Netherlands. Emerg Infect Dis 15:613–614

    PubMed  Google Scholar 

  • La Scola B (2002) Current laboratory diagnosis of Q fever. Semin Pediatr Infect Dis 13:257–262

    PubMed  Google Scholar 

  • Li Q, Niu D, Wen B, Chen M, Qiu L, Zhang J (2005) Protective immunity against Q fever induced with a recombinant PI antigen fused with HspB of Coxiella burnetii. Ann N Y Acad Sci 1063:130–142

    PubMed  CAS  Google Scholar 

  • Lukacova M, Gajdosova E, Skultety L, Kovacova E, Kazar J (1994) Characterization and protective effect of a 29 kDa protein isolated from Coxiella burnetii by detergent Empigen BB. Eur J Epidemiol 10:227–230

    PubMed  CAS  Google Scholar 

  • Lukacova M, Barak I, Kazar J (2008) Role of structural variations of polysaccharide antigens in the pathogenicity of Gram-negative bacteria. Clin Microbiol Infect 14:200–206

    PubMed  CAS  Google Scholar 

  • Luoto L, Casey ML, Pickens EG (1965) Q fever studies in Montana: detection of asymptomatic infection among residents of infected dairy premises. Am J Epidemiol 81:356–369

    PubMed  CAS  Google Scholar 

  • Marmion B (2007) Q fever: the long journey to control by vaccination. Med J Aust 186:164–166

    PubMed  Google Scholar 

  • Marmion BP, Storm PA, Ayres JG, Semendric L, Mathews L, Winslow W, Turra M, Harris RJ (2005) Long-term persistence of Coxiella burnetii after acute primary Q fever. Q J Med 98:7–20

    CAS  Google Scholar 

  • Meiklejohn G, Reimer LG, Graves PS, Helmick C (1981) Cryptic epidemic of Q fever in a medical school. J Infect Dis 144:107–113

    PubMed  CAS  Google Scholar 

  • Million M, Thuny F, Richet H, Raoult D (2010) Long-term outcome of Q fever endocarditis: a 26-year personal survey. Lancet Infect Dis 10:527–535

    PubMed  Google Scholar 

  • Moos A, Hackstadt T (1987) Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun 55:1144–1150

    PubMed  CAS  Google Scholar 

  • Morisawa Y, Wakiguchi H, Takechi T, Kurashige T, Nagaoka H (2001) Intractable Q fever treated with recombinant gamma interferon. Pediatr Infect Dis J 20:546–547

    PubMed  CAS  Google Scholar 

  • Muller HP, Schmeer N, Rantamaki L, Semler B, Krauss H (1987) Isolation of a protein antigen from Coxiella burnetii. Zentralbl Bakteriol Mikrobiol Hyg A 265:277–289

    PubMed  CAS  Google Scholar 

  • Narasaki CT, Mertens K, Samuel JE (2011) Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-β-D-virenose biosynthesis. PLoS One 6(10):e25514

    PubMed  CAS  Google Scholar 

  • Neth OW, Falcon D, Peromingo E, Soledad Camacho M, Rodriguez-Gallego C, Obando I (2011) Successful management of chronic multifocal Q fever osteomyelitis with adjuvant interferon-gamma therapy. Pediatr Infect Dis J 30(9):810–812

    PubMed  Google Scholar 

  • Omsland A, Cockrell DC, Fischer ER, Heinzen RA (2008) Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii. J Bacteriol 190:3203–3212

    PubMed  CAS  Google Scholar 

  • Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, Porcella SF, Heinzen RA (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci U S A 106:4430–4434

    PubMed  CAS  Google Scholar 

  • Ormsbee RA, Marmion BP (1990) The disease. In: Marrie TJ (ed) Q fever, vol 1. CRC Press, Boca Raton, p 226

    Google Scholar 

  • Ormsbee RA, Bell EJ, Lackman DB, Tallent G (1964) The influence of phase on the protective potency of Q fever vaccine. J Immunol 92:404–412

    PubMed  CAS  Google Scholar 

  • Palkovicova K, Ihnatko R, Vadovic P, Betinova E, Skultety L, Frangoulidis D, Toman R (2009) A monoclonal antibody specific for a unique biomarker, virenose, in a lipopolysaccharide of Coxiella burnetii. Clin Microbiol Infect 15:183–184

    PubMed  CAS  Google Scholar 

  • Panning M, Kilwinski J, Greiner-Fischer S, Peters M, Kramme S, Frangoulidis D, Meyer H, Henning K, Drosten C (2008) High throughput detection of Coxiella burnetii by real-time PCR with internal control system and automated DNA preparation. BMC Microbiol 8:77–84

    PubMed  Google Scholar 

  • Peter O, Dupuis G, Peacock MG, Burgdorfer W (1987) Comparison of enzyme-linked immunosorbent assay and complement fixation and indirect fluorescent-antibody tests for detection of Coxiella burnetii antibody. J Clin Microbiol 25:1063–1067

    PubMed  CAS  Google Scholar 

  • Pierce CY, Barr JR, Woolfitt AR, Moura H, Shaw EI, Thompson HA, Massung RF, Fernandez FM (2007) Strain and phase identification of the U.S. category B agent Coxiella burnetii by matrix assisted laser desorption/ionization time-of-flight mass spectrometry and multivariate pattern recognition. Anal Chem Acta 583:23–31

    CAS  Google Scholar 

  • Raoult D, Houpikian P, Tissot Dupont H, Riss JM, Arditi-Djiane J, Brouqui P (1999) Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med 159:167–173

    PubMed  CAS  Google Scholar 

  • Redd T, Thompson HA (1995) Secretion of proteins by Coxiella burnetii. Microbiology 141:363–369

    PubMed  CAS  Google Scholar 

  • Richardus JH, Donkers A, Dumas AM, Schaap GJP, Akkermans JPWM, Huisman J, Valkenburg HA (1987) Q fever in the Netherlands: a sero-epidemiological survey among human population groups from 1968-1983. Epidemiol Infect 98:211–219

    PubMed  CAS  Google Scholar 

  • Russel-Lodrigue KE, Andoh M, Poels MW, Shive HR, Weeks BR, Zhang GQ, Tersteeg T, Masegi T, Hotta A, Yamaguchi T, Fukushi H, Hirai K, McMurray DN, Samuel JE (2009) Coxiella burnetii isolates cause genogroup specific virulence in mouse and guinea pig models of acute Q fever. Infect Immun 77:5640–5650

    Google Scholar 

  • Samoilis G, Aivaliotis M, Vranakis I, Papadioti A, Tselentis Y, Tsiotis G, Psaroulaki A (2010) Proteomic screening for possible effector molecules secreted by the obligate intracellular pathogen Coxiella burnetii. J Proteome Res 9:1619–1626

    PubMed  CAS  Google Scholar 

  • Sawyer LA, Fishbein DB, McDade JE (1987) Q fever: current concepts. Rev Infect Dis 9:935–946

    PubMed  CAS  Google Scholar 

  • Schmeer N, Muller P, Langel J, Krauss H, Frost JW, Wieda J (1987) Q fever vaccines for animals. Zentralbl Bakteriol Microbiol Hyg A 267:79–88

    CAS  Google Scholar 

  • Schmeer N, Muller H-P, Baumgartner W, Wieda J, Krauss H (1988) Enzyme-linked immunosorbent fluorescence assay and high-pressure liquid chromatography for analysis of humoral immune responses to Coxiella burnetii proteins. J Clin Microbiol 26:2520–2525

    PubMed  CAS  Google Scholar 

  • Schneeberger PM, Hermans MHA, van Hannen EJ, Schellekens JJA, Leenders ACAP, Wever PC (2010) Real-time PCR with serum samples is indispensible for early diagnosis of acute Q fever. Clin Vaccine Immunol 17:286–290

    PubMed  CAS  Google Scholar 

  • Schramek S, Mayer H (1982) Different sugar compositions of lipopolysaccharides isolated from phase I and pure phase II cells of Coxiella burnetii. Infect Immun 38:53–57

    PubMed  CAS  Google Scholar 

  • Sekeyova Z, Kowalczewska M, Decloquement P, Pelletier N, Spitalska E, Raoult D (2009) Identification of protein candidates for the serodiagnosis of Q fever endocarditis by an immunoproteomic approach. Eur J Clin Microbiol Infect Dis 28:287–295

    PubMed  Google Scholar 

  • Sekeyova Z, Kowalczewska M, Vincentelli R, Decloquement P, Flores-Ramirez G, Skultety L, Raoult D (2010) Characterization of antigens for Q fever serodiagnostics. Acta Virol 54:173–180

    PubMed  CAS  Google Scholar 

  • Shaw EI, Moura H, Woolfitt AR, Ospina M, Thompson HA, Barr JR (2004) Identification of biomarkers of whole Coxiella burnetii phase I by MALDI-TOF mass spectrometry. Anal Chem 76:4017–4022

    PubMed  CAS  Google Scholar 

  • Smadel JE, Snyder MJ, Robbins FC (1948) Vaccination against Q fever. Am J Hyg 47:71

    PubMed  CAS  Google Scholar 

  • Stein A, Kruszewska D, Gouvernet J, Raoult D (1997) Study of the 16S-23S ribosomal DNA internal spacer of Coxiella burnetii. Eur J Epidemiol 13:471–475

    PubMed  CAS  Google Scholar 

  • Stoker MG, Fiset P (1956) Phase variation of the Nine Mile and other strains of Rickettsia burnetii. Can J Microbiol 2:310–321

    PubMed  CAS  Google Scholar 

  • Svraka S, Toman R, Skultety L, Slaba K, Homan WL (2006) Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett 254:268–274

    PubMed  CAS  Google Scholar 

  • Thiele D, Willems H, Krauss H (1994) The 16S/23S ribosomal spacer region of Coxiella burnetii. Eur J Epidemiol 10:421–426

    PubMed  CAS  Google Scholar 

  • Tilburg JJHC, Melchers WJG, Pettersson AM, Rossen JWA, Hermans MHA, van Hannen EJ, Nabuurs-Franssen MH, de Vries MC, Horrevorts AM, Klaassen CHW (2010) Interlaboratory evaluation of different extraction and real-time PCR methods for detection of Coxiella burnetii DNA in serum. J Clin Microbiol 48:3923–3927

    PubMed  CAS  Google Scholar 

  • Tissot-Dupont H, Vaillant V, Rey S, Raoult D (2007) Role of sex, age, previous valve lesion, and pregnancy in the clinical expression and outcome of Q fever after a large outbreak. Clin Infect Dis 44:232–237

    PubMed  Google Scholar 

  • To H, Hotta A, Zhang GQ, Nguyen SV, Ogawa M, Yamaguchi T, Fukushi H, Amano K, Hirai K (1998) Antigenic characteristics of polypeptides of Coxiella burnetii isolates. Microbiol Immunol 42:81–85

    PubMed  CAS  Google Scholar 

  • Varghees S, Kiss K, Frans G, Braha O, Samuel J (2002) Cloning and porin activity of the outer membrane protein P1 from Coxiella burnetii. Infect Immun 70:6741–6750

    PubMed  CAS  Google Scholar 

  • Vigil A, Ortega R, Nakajima-Sasaki R, Pablo J, Molina DM, Chao C-C, Chen H-W, Ching W-M, Felgner PL (2010) Genome-wide profiling of humoral immune response to Coxiella burnetii infection by protein microarray. Proteomics 10:2259–2269

    PubMed  CAS  Google Scholar 

  • Vigil A, Chen C, Jain A, Nakajima-Sasaki R, Jasinskas A, Pablo J, Hendrix LR, Samuel JE, Felgner PL (2011) Profiling the humoral immune response of acute and chronic Q fever by protein microarray. Mol Cell Proteomics 10(10):M110.006304

    PubMed  Google Scholar 

  • Vodkin MH, Williams JC (1986) Overlapping deletion in two spontaneous phase variants of Coxiella burnetii. J Gen Microbiol 132:2587–2594

    PubMed  CAS  Google Scholar 

  • Vodkin MH, Williams JC, Stephenson EH (1986) Genetic heterogeneity among isolates of Coxiella burnetii. J Gen Microbiol 132:455–463

    PubMed  CAS  Google Scholar 

  • Waag DM, Bolt CR, Marrie TJ, Williams JC (1991) The biology of Coxiella burnetii. In: Williams JC, Thompson HA (eds) Q fever. CRC Press, Boca Raton, pp 164–167

    Google Scholar 

  • Waag DM, England MJ, Pitt ML (1997) Comparative efficacy of a Coxiella burnetii chloroform:methanol residue (CMR) vaccine and a licensed cellular vaccine (Q-Vax) in rodents challenged by aerosol. Vaccine 15:1779–1783

    PubMed  CAS  Google Scholar 

  • Waag DM, England MJ, Tammariello RF, Byrne WR, Gibbs P, Banfield CM (2002) Comparative efficacy and immunogenicity of Q fever chloroform:methanol residue (CMR) and phase I cellular (Q-Vax) vaccine in cynomolgus monkeys challenged by aerosol. Vaccine 20:2623–2634

    PubMed  CAS  Google Scholar 

  • Waag DM, England MJ, Bolt CR, Williams JC (2008) Low-dose priming before vaccination with the phase I chloroform-methanol residue vaccine against Q fever enhances humoral and cellular immune responses to Coxiella burnetii. Clin Vaccine Immunol 15:1505–1512

    PubMed  CAS  Google Scholar 

  • Williams JC, Cantrell JL (1982) Biological and immunological properties of Coxiella burnetii vaccines in C57BL/10ScN endotoxin-nonresponder mice. Infect Immun 35:1091–1102

    PubMed  CAS  Google Scholar 

  • Williams JC, Damrow TA, Waag DM, Amano K (1986) Characterization of a phase I Coxiella burnetii chloroform-methanol residue vaccine that induces active immunity against Q fever in C57BL/10ScN mice. Infect Immun 51:851–858

    PubMed  CAS  Google Scholar 

  • Williams JC, Peacock MG, Waag DM, Kent G, England MJ, Nelson G, Stephenson EH (1990) Vaccines against coxiellosis and Q fever. Ann N Y Acad Sci 590:88–111

    Google Scholar 

  • Wisniewski HJ, Kleiman MW, Lackman DB, Krumbiegel ER (1969) Demonstration of inapparent infection with disease agents common to animals and man. Health Lab Sci 6:173–177

    PubMed  CAS  Google Scholar 

  • Zhang GQ, Samuel JE (2003) Identification and cloning potentially protective antigens of Coxiella burnetii using sera from mice experimentally infected with Nine Mile phase I. Ann N Y Acad Sci 990:510–520

    PubMed  CAS  Google Scholar 

  • Zhang YX, Zhi N, Yu SR, Li QR, Yu GC, Zhang X (1994) Protective immunity induced by 67K outer membrane protein of phase I Coxiella burnetii in mice and guinea pigs. Acta Virol 38:327–332

    PubMed  CAS  Google Scholar 

  • Zhang GQ, Kiss K, Seshadri R, Hendrix LR, Samuel J (2004) Identification and cloning of immunodominant antigens of Coxiella burnetii. Infect Immun 72:844–852

    PubMed  CAS  Google Scholar 

  • Zhang G, To H, Russell KE, Hendrix LR, Yamaguchi T, Fukushi H, Hirai K, Samuel JE (2005) Identification and characterization of an immunodominant 28-kilodalton Coxiella burnetii outer membrane protein specific to isolates associated with acute disease. Infect Immun 73:1561–1567

    PubMed  CAS  Google Scholar 

  • Zhang G, Russell-Lodrigue KE, Andoh M, Zhang Y, Hendrix LR, Samuel JE (2007) Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J Immunol 179:8372–8380

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura R. Hendrix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hendrix, L.R., Chen, C. (2012). Antigenic Analysis for Vaccines and Diagnostics. In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_16

Download citation

Publish with us

Policies and ethics