Skip to main content

Recovery of the Bone Marrow in Lethally Irradiated Host: Role of Hyper-Activated Stem Cell Factor Receptor

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 7

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 7))

  • 1109 Accesses

Abstract

During last decade or more, investigations have been pursued towards finding molecular cross-talks involving proto-oncogene transformation to oncogene in aggressive form of hematological malignancies. Oncologists and structural biologists have identified several hotspots in tyrosine kinase proto-oncogenes, which decided the diverse aberrant cell fate decisions in cancers. But direct exploitation of the aberrant behavior of tyrosine kinase oncogenes in regenerative cell therapies has not been thought, so far. The present report has introduced a novel outlook for hematopoietic stem cells (HSCs) therapy on the basis of structural and functional interpretation of stem cell factor receptor (c-Kit), which can change the perspectives of oncogene-oriented structural biology approach. c-Kit, the master signal transducer of HSCs holds many structural intricacies, for which it becomes vulnerable to the extent of oncogenic activation or inactivation. Both these attributes strictly involve in deciding on the fate of HSCs signaling. c-Kit hyperactivity contributes to oncogenic signaling of HSCs, leading to hematological malignancies. Whereas, c-Kit inactivation leads to irreversible developmental defects. Conserved hotspots in c-Kit structure have long been discussed by cell biologists as well as structural biologists, as these sites delineate the sensitivity towards kinase inhibitors or anticancer drugs. Recent studies of our group envisaged a new dimension to c-Kit’s interaction with one of its negative regulators. The study suggested crucial hydrogen bonds between c-Kit catalytic domain and tyrosine phosphatase-1 (SHP-1) regulate its kinase activity. So, disruption of any such bonding between c-Kit and its negative regulator may lead to hyperactive variants. Study also suggested an interesting hypothesis, which explains transient ectopic expression of hyper-activating Kit-mutant can induce early commitment of hematopoiesis in lethally irradiated mice. We have hypothesized that designing non-oncogenic or partial hyper-activating mutants in c-Kit may generate new class of active variants. This approach may lead to the generation of therapeutic candidates for HSCs specific molecular targets in regenerative medicine using other existing proto-oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baxter LL, Hou L, Loftus SK, Pavan WJ (2004) Spotlight on spotted mice: a review of white spotting mouse mutants and associated human pigmentation disorders. Pigment Cell Res 17:215–224

    Article  CAS  PubMed  Google Scholar 

  • Broudy VC, Lin NL, Liles WC, Corey SJ, O’Laughlin B, Mou S, Linnekin D (1999) Signaling via Src family kinases is required for normal internalization of the receptor c-Kit. Blood 94:1979–1986

    CAS  PubMed  Google Scholar 

  • Cellot S, Krosl J, Chagraoui J, Meloche S, Humphries RK, Sauvageau G (2007) Sustained in vitro trigger of self-renewal divisions in Hoxb4hiPbx1lo hematopoietic stem cells. Exp Hematol 35:802–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan PM, Ilangumaran S, La Rose J, Chakrabarty A, Rottapel R (2003) Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol 23:3067–3078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheshier SH, Morrison SJ, Liao X, Weissman IL (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 96:3120–3125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chian R, Young S, Danilkovitch-Miagkova A, Ronnstrand L, Leonard E, Ferrao P, Ashman L, Linnekin D (2001) Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood 98:1365–1373

    Article  CAS  PubMed  Google Scholar 

  • Choi U, Malech HL (2000) Inverse PCR analysis of unique inserts found in peripheral blood neutrophils following clinical gene therapy for chronic granulomatous disease. Blood 96:805a

    Google Scholar 

  • De Angelo DJ, Stone RM, Heaney ML, Nimer SD, Paquette RL, Klisovic RB, Caligiuri MA, Cooper MR, Lecerf J, Karol MD, Sheng S, Holford N, Curtin PT, Druker BJ, Heinrich MC (2003) Phase I clinical results with MLN518, a novel Flt3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 108:3674–3681

    Article  Google Scholar 

  • Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, Yoon K, Cook JM, Willert K, Gaiano N, Reya T (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6:314–322

    Article  CAS  PubMed  Google Scholar 

  • Frost MJ, Ferrao PT, Hughes TP, Ashman LK (2002) Juxtamembrane mutant V560GKit is more sensitive to Imatinib (STI571) compared with wild-type c-Kit whereas the kinase domain mutant D816VKit is resistant. Mol Cancer Ther 1:1115–1124

    CAS  PubMed  Google Scholar 

  • Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ (2005) Mast cell-deficient W-sash c-Kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto K, Matsumura I, Tsujimura T, Kim D, Ogihara H, Ikeda H, Ueda S, Mizuki M, Sugahara H, Shibayama H, Kitamura Y, Kanakura Y (2003) Necessity of tyrosine 719 and phosphatidylinositol-3 kinase-mediated signal pathway in constitutive activation and oncogenic potential of c-kit receptor tyrosine kinase with the Asp814Val mutation. Blood 101:1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Kitayama H, Kanakura Y, Furitsu T, Tsujimura T, Oritani K, Ikeda H, Sugahara H, Mitsui H, Kanayama Y, Kitamura Y (1995) Constitutively activating mutations of c-Kit receptor tyrosine kinase confer factor-independent growth and tumorigenicity of factor-dependent hematopoietic cell lines. Blood 85:790–798

    CAS  PubMed  Google Scholar 

  • Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA (1998) SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol Cell Biol 18:2089–2099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R (2005) Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem Cells 23:16–43

    Article  CAS  PubMed  Google Scholar 

  • Mackall C, Fry T, Gress R, Peggs K, Storek J, Toubert A (2009) Background to hematopoietic cell transplantation, including post transplant immune recovery. Bone Marrow Trans 44:457–462

    Article  CAS  Google Scholar 

  • Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, Snell GP, Zou H, Sang BC, Wilson KP (2004) Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 279:31655–31663

    Article  CAS  PubMed  Google Scholar 

  • Moller C, Alfredsson J, Engstrom M, Wootz H, Xiang Z, Lennartsson J, Jonsson JI, Nilsson G (2005) Stem cell factor promotes mast cell survival via inactivation of FOXO3a mediated transcriptional induction and MEK regulated phosphorylation of the pro-apoptotic protein Bim. Blood 106:1330–1336

    Article  PubMed  Google Scholar 

  • Mostoslavsky G, Kotton DN, Fabia AJ, Gray JT, Lee J-S, Mulligan RC (2005) Efficiency of transduction of highly purified murine hematopoietic stem cells by lentiviral and oncoretroviral vectors under conditions of minimal in vitro manipulation. Mol Ther 11:932–940

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell AM, Yuen HA, Smolich B, Hannah AL, Louie SG, Hong W, Stopeck AT, Silverman LR, Lancet JE, Karp JE, Albitar M, Cherrington JM, Giles FJ (2004) Effects of SU5416, a small molecule tyrosine kinase receptor inhibitor, on FLT3 expression and phosphorylation in patients with refractory acute myeloid leukemia. Leuk Res 28:679–689

    Article  PubMed  Google Scholar 

  • Pati S, Gurudutta GU, Kalra OP, Mukhopadhyay A (2010) The structural insights of stem cell factor receptor (c-Kit) interaction with tyrosine phosphatase-2 (Shp-2): an in silico analysis. BMC Res Notes 3:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Pati S, Kalra OP, Mukhopadhayay A (2011) Foe turned friend: multiple functional roles attributable to hyper-activating stem cell factor receptor mutant in regeneration of the haematopoietic cell compartment. Cell Prolif 44:10–18

    Article  CAS  PubMed  Google Scholar 

  • Pullarkat V, Slovak ML, Dagis A, Bedell V, Somlo G, Nakamura R, Stein AS, O’Donnell MR, Nademanee A, Teotico AL, Bhatia S, Forman SJ (2009) Acute leukemia and myelodysplasia after adjuvant chemotherapy for breast cancer: durable remissions after hematopoietic stem cell transplantation. Ann Oncol 20:2000–2006

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Ward M, Raftopoulos H, Tang H, Bradley B, Hesdorffer C, Bank A (1999) Competitive repopulation of retrovirally transduced hematopoietic stem cells. Br J Haematol 107:162–168

    Article  CAS  PubMed  Google Scholar 

  • Rozgaj R, KaSuba V, Sentija K, Prlid I (1999) Radiation-induced chromosomal aberrations and haematological alterations in hospital workers. Occup Med 49:353–360

    Article  CAS  Google Scholar 

  • Sharma S, Gurudutta GU, Satija NK, Pati S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi RP (2006) Stemcell c-KIT and HOXB4 genes: critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cell Dev 15:755–778

    Article  CAS  Google Scholar 

  • Shipitsin M, Polyak K (2008) The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 88:459–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shivakrupa R, Bernstein A, Watring N, Linnekin D (2003) Phosphatidylinositol 3 kinase is required for growth of mast cells expressing the kit catalytic domain mutant. Cancer Res 63:4412–4419

    CAS  PubMed  Google Scholar 

  • Thommes K, Lennartsson J, Carlberg M, Rönnstrand L (1999) Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochem J 341:211–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torrent M, Rickert K, Pan BS, Sepp-Lorenzino L (2004) Analysis of the activating mutations within the activation loop of leukemia targets Flt-3 and c-Kit based on protein homology modeling. J Mol Graph Mod 23:153–165

    Article  CAS  Google Scholar 

  • Trumpp A, Marieke E, Wilson A (2010) Awakening dormant haematopoietic stem cells. Nat Rev Immunol 10:201–210

    Article  CAS  PubMed  Google Scholar 

  • Vega-Stromberg T (2003) Chemotherapy-induced secondary malignancies. J Infus Nurs 26:353–361

    Article  PubMed  Google Scholar 

  • Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, Horace T, Confer DL, Coleman CN, Seed T, Lowry P, Armitage JO, Dainiak MN (2004) Medical management of the acute radiation syndrome: recommendations of the strategic national stockpile radiation working group. Ann Intern Med 140:1037–1051

    Article  PubMed  Google Scholar 

  • Yang L, Bryder D, Adolfsson J, Nygren J, Månsson R, Sigvardsson M, Jacobsen SEW (2005) Identification of LinSca1+kit+CD34+Flt3 short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105:2717–2723

    Article  CAS  PubMed  Google Scholar 

  • Zon LI (2008) Intrinsic and extrinsic control of hematopoietic stem-cell self-renewal. Nature 453:303–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asok Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pati, S., Mukhopadhyay, A. (2012). Recovery of the Bone Marrow in Lethally Irradiated Host: Role of Hyper-Activated Stem Cell Factor Receptor. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 7. Stem Cells and Cancer Stem Cells, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4285-7_8

Download citation

Publish with us

Policies and ethics