Skip to main content

Technology Platforms for Heart Regenerative Therapy Using Pluripotent Stem Cells

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 7

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 7))

  • 1121 Accesses

Abstract

Heart failure is a common, disabling, and deadly disease affecting over 23 million people worldwide. The prevalence of this disease continues to increase each year despite substantial advances in pharmacological treatments and mechanical assistance. Heart transplantation is the ultimate treatment for severe refractory heart failure. However, it benefits only a small proportion of patients because of the limited number of donors and significant surgical invasion. Heart regenerative-cell therapy thus presents a promising alternative strategy. Pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) could provide mass-production cell sources for such therapies because they can theoretically self-renew indefinitely. Currently, iPSCs are intensively studied because they are more easily derived from somatic cells than ESCs, carry fewer ethical concerns, and have potentially wider applications including autologous cell therapies. However, technical concerns remain with the use of iPSCs.

A xenofree culture system would be ideal for therapeutically applied PSCs, although such culture systems still have limited compatibility with many cell lines. To improve this, we have developed a simple preparation method for culturing autogeneic feeder cells from each PSC line. Potential tumorigenicity also remains a major obstacle to clinical applications for PSCs. For heart regenerative therapy, purifying differentiated cardiomyocytes would be a reasonable approach for eliminating undifferentiated cells and retaining only therapeutic cells. To this end, we have established a nongenetic method for PSC purification using mitochondrial marker dyes. Finally, transplantation and efficient survival of PSC-derived cardiomyocytes has proven difficult and it depends on the method of cell preparation. Recently, washout and anoikis were identified as factors underlying the disappearance of injected cardiomyocytes from heart. We have now also developed a simple and efficient way to achieve over 90% survival of injected cardiomyocytes in the host heart. This chapter will lastly discuss new obstacles and future divergent directions for PSCs in heart regenerative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JD, Fedoruk LM, Tache-Leon CA, Peeler BB, Kern JA, Tribble CG, Bergin JD, Kron IL (2006) Does preoperative ejection fraction predict operative mortality with left ventricular restoration? Ann Thorac Surg 82:1715–1719

    Article  PubMed  Google Scholar 

  • Akopian V, Andrews PW, Beil S, Benvenisty N, Brehm J, Christie M, Ford A, Fox V, Gokhale PJ, Healy L, Holm F, Hovatta O, Knowles BB, Ludwig TE, McKay RD, Miyazaki T, Nakatsuji N, Oh SK, Pera MF, Rossant J, Stacey GN, Suemori H (2010) Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev Biol Anim 46:247–258

    Article  PubMed Central  PubMed  Google Scholar 

  • Amit M, Itskovitz-Eldor J (2006) Feeder-free culture of human embryonic stem cells. Methods Enzymol 420:37–49

    CAS  PubMed  Google Scholar 

  • Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 6(2):248–259

    Article  PubMed  Google Scholar 

  • Bettencourt-Dias M, Mittnacht S, Brockes JP (2003) Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci 116(Pt 19):4001–4009

    Article  CAS  PubMed  Google Scholar 

  • Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A (2011) Reference maps of human ESC and iPS variation enable high-throughput characterization of pluripotent cell lines. Cell 144(3):439–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burggren WW, Bicudo JE, Glass ML, Abe AS (1992) Development of blood pressure and cardiac reflexes in the frog Pseudis paradoxsus. Am J Physiol 263(3 Pt 2):R602–R608

    CAS  PubMed  Google Scholar 

  • Catalina P, Montes R, Ligero G, Sanchez L, de la Cueva T, Bueno C, Leone PE, Menendez P (2008) Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 7:76

    Article  PubMed Central  PubMed  Google Scholar 

  • Choo A, Padmanabhan J, Chin A, Fong WJ, Oh SK (2006) Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. J Biotechnol 122(1):130–141

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Rosa JM, Martin V, Peralta M, Torres M, Mercader N (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138(9):1663–1674

    Article  CAS  PubMed  Google Scholar 

  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison NJ, Baker D, Andrews PW (2007) Culture adaptation of embryonic stem cells echoes germ cell malignancy. Int J Androl 30(4):275–281, discussion 281

    Article  PubMed  Google Scholar 

  • Hattori F, Chen H, Yamashita H, Tohyama S, Satoh YS, Yuasa S, Li W, Yamakawa H, Tanaka T, Onitsuka T, Shimoji K, Ohno Y, Egashira T, Kaneda R, Murata M, Hidaka K, Morisaki T, Sasaki E, Suzuki T, Sano M, Makino S, Oikawa S, Fukuda K (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Hervant F, Mathieu J, Durand J (2001) Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J Exp Biol 204(Pt 2):269–281

    CAS  PubMed  Google Scholar 

  • Hicks JW, Ishimatsu A, Molloi S, Erskin A, Heisler N (1996) The mechanism of cardiac shunting in reptiles: a new synthesis. J Exp Biol 199(Pt 6):1435–1446

    CAS  PubMed  Google Scholar 

  • Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brustle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471(7336):58–62

    Article  CAS  PubMed  Google Scholar 

  • Jopling C, Sleep E, Raya M, Marti M, Raya A, Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kikuchi K, Holdway JE, Major RJ, Blum N, Dahn RD, Begemann G, Poss KD (2011) Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20(3):397–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laube F, Heister M, Scholz C, Borchardt T, Braun T (2006) Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119(Pt 22):4719–4729

    Article  CAS  PubMed  Google Scholar 

  • Lee JB, Lee JE, Park JH, Kim SJ, Kim MK, Roh SI, Yoon HS (2005) Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol Reprod 72(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonnell TJ, Oberpriller JO (1983) The atrial proliferative response following partial ventricular amputation in the heart of the adult newt. A light and electron microscopic autoradiographic study. Tissue Cell 15(3):351–363

    Article  CAS  PubMed  Google Scholar 

  • Michel C, Yamada T (1974) Cellular studies of X-ray induced inhibition of lens regeneration. Differentiation 2(4):193–201

    Article  CAS  PubMed  Google Scholar 

  • Minerick AR, Chang HC, Hoagland TM, Olson KR (2003) Dynamic synchronization analysis of venous pressure-driven cardiac output in rainbow trout. Am J Physiol Regul Integr Comp Physiol 285(4):R889–R896

    CAS  PubMed  Google Scholar 

  • Moore JC, Fu J, Chan YC, Lin D, Tran H, Tse HF, Li RA (2008) Distinct cardiogenic preferences of two human embryonic stem cell (hESC) lines are imprinted in their proteomes in the pluripotent state. Biochem Biophys Res Commun 372(4):553–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Novak CM, Jiang X, Wang C, Teske JA, Kotz CM, Levine JA (2005) Caloric restriction and physical activity in zebrafish (Danio rerio). Neurosci Lett 383(1–2):99–104

    Article  CAS  PubMed  Google Scholar 

  • Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453(7193):322–329

    Article  CAS  PubMed  Google Scholar 

  • Ringer RK, Weiss HS, Sturkie PD (1955) Effect of sex and age on blood pressure in the duck and pigeon. Am J Physiol 183(1):141–143

    CAS  PubMed  Google Scholar 

  • Salo E, Baguna J (1985) Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. J Embryol Exp Morphol 89:57–70

    CAS  PubMed  Google Scholar 

  • Schmelting B, Niehoff M, Egner B, Korte SH, Weinbauer GF (2009) High Definition Oscillometry: a novel technique for non-invasive blood pressure monitoring in the cynomolgus monkey (Macaca fascicularis). J Med Primatol 38(5):293–301

    Article  CAS  PubMed  Google Scholar 

  • Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258(4):319–337

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Koyano-Nakagawa N, Garry JP, Weaver CV (2010) Heart of newt: a recipe for regeneration. J Cardiovasc Transl Res 3(4):397–409

    Article  PubMed  Google Scholar 

  • Stinner JN, Ely DL (1993) Blood pressure during routine activity, stress, and feeding in black racer snakes (Coluber constrictor). Am J Physiol 264(1 Pt 2):R79–R84

    CAS  PubMed  Google Scholar 

  • Stojkovic P, Lako M, Stewart R, Przyborski S, Armstrong L, Evans J, Murdoch A, Strachan T, Stojkovic M (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23(3):306–314

    Article  CAS  PubMed  Google Scholar 

  • Ueno T, Sakata R, Iguro Y, Yamamoto H, Ueno M, Matsumoto K (2007) Mid-term changes of left ventricular geometry and function after Dor, SAVE, and overlapping procedures. Eur J Cardiothorac Surg 32(1):52–57

    Article  PubMed  Google Scholar 

  • Unger C, Gao S, Cohen M, Jaconi M, Bergstrom R, Holm F, Galan A, Sanchez E, Irion O, Dubuisson JB, Giry-Laterriere M, Salmon P, Simon C, Hovatta O, Feki A (2009) Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells. Hum Reprod 24(10):2567–2581

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Panakova D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, Macrae CA, Poss KD (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138(16):3421–3430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wertz RL, Donaldson DJ, Mason JM (1976) X-ray induced inhibition of DNA synthesis and mitosis in internal tissues during the initiation of limb regeneration in the adult newt. J Exp Zool 198(2):253–259

    Article  CAS  PubMed  Google Scholar 

  • Yamashita H, Li W, Hattori F, Chen H, Tohyama S, Satoh Y, Sasaki E, Yuasa S, Makino S, Sano M, Fukuda K (2011) Simple autogeneic feeder cell preparation for pluripotent stem cells. Stem Cell Res 6(1):83–89

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiyuki Hattori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hattori, F. (2012). Technology Platforms for Heart Regenerative Therapy Using Pluripotent Stem Cells. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 7. Stem Cells and Cancer Stem Cells, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4285-7_4

Download citation

Publish with us

Policies and ethics