Skip to main content

Accelerated Neural Differentiation of Human Induced Pluripotent Stem Cells Using Chlorate Treatment

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 7

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 7))

  • 1137 Accesses

Abstract

The development of rapid, efficient and safe methods for neural induction from human induced pluripotent stem (iPS) cells is a necessary part of the development of cell replacement therapies. One promising approach for the development of new methodologies is through the regulation of extrinsic signals. Sulfated glycans work as co-receptors or stabilizers of ligand signaling molecules such as BMP, Wnt and FGF, and contribute to the differentiation of embryonic stem (ES) cells and iPS cells. Sulfation of these glycans is indispensable for this function. Sulfated glycans, including heparan sulfate and chondroitin sulfate, are expressed on the cell surface and in the extracellular matrix, and their levels of expression increase during differentiation from ES/iPS cells. Chlorate, a chemical inhibitor of sulfation, reduces the sulfation level of glycans and could, therefore, be used for the regulation of these extrinsic signals. In both mouse ES cells and human iPS cells, chlorate treatment inhibits mesodermal differentiation, induces ectodermal differentiation and then accelerates neural differentiation. Neural differentiation can be achieved in 7 days in both cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aubert J, Dunstan H, Chambers I, Smith A (2002) Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 20:1240–1245

    Article  CAS  PubMed  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finley MF, Devata S, Huettner JE (1999) BMP-4 inhibits neural differentiation of murine embryonic stem cells. J Neurobiol 40:271–287

    Article  CAS  PubMed  Google Scholar 

  • Goda E, Kamiyama S, Uno T, Yoshida H, Ueyama M, Kinoshita-Toyoda A, Toyoda H, Ueda R, Nishihara S (2006) Identification and characterization of a novel Drosophila 3′-phosphoadenosine 5′-phosphosulfate transporter. J Biol Chem 281:28508–28517

    Article  CAS  PubMed  Google Scholar 

  • Habuchi H, Kimata K (2010) Mice deficient in heparan sulfate 6-O-sulfotransferase-1. Prog Mol Biol Transl Sci 93:79–111

    Article  CAS  PubMed  Google Scholar 

  • Haegele L, Ingold B, Naumann H, Tabatabai G, Ledermann B, Brandner S (2003) Wnt signalling inhibits neural differentiation of embryonic stem cells by controlling bone morphogenetic protein expression. Mol Cell Neurosci 24:696–708

    Article  CAS  PubMed  Google Scholar 

  • Holley RJ, Pickford CE, Rushton G, Lacaud G, Gallagher JT, Kouskoff V, Merry CL (2011) Influencing hemato-poietic differentiation of mouse embryonic stem cells using soluble heparin and heparan sulfate saccharides. J Biol Chem 286:6241–6252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046

    Article  CAS  PubMed  Google Scholar 

  • Johnson CE, Crawford BE, Stavridis M, Ten Dam G, Wat AL, Rushton G, Ward CM, Wilson V, van Kuppevelt TH, Esko JD, Smith A, Gallagher JT, Merry CL (2007) Essential alterations of heparan sulfate during the differentiation of embryonic stem cells to Sox1-enhanced green fluorescent protein-expressing neural progenitor cells. Stem Cells 25:1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Kamiyama S, Nishihara S (2004) The subcellular PAPS synthesis pathway responsible for the sulfation of proteoglycans: a comparison between humans and Drosophila melanogaster. Trends Glycosci Glycotechnol 16:109–123

    Article  CAS  Google Scholar 

  • Kamiyama S, Suda T, Ueda R, Suzuki M, Okubo R, Kikuchi N, Chiba Y, Goto S, Toyoda H, Saigo K, Watanabe M, Narimatsu H, Jigami Y, Nishihara S (2003) Molecular cloning and identification of 3′-phosphoadenosine 5′-phosphosulfate transporter. J Biol Chem 278:25958–25963

    Article  CAS  PubMed  Google Scholar 

  • Kamiyama S, Sasaki N, Goda E, Ui-Tei K, Saigo K, Narimatsu H, Jigami Y, Kannagi R, Irimura T, Nishihara S (2006) Molecular cloning and characterization of a novel 3′-phosphoadenosine 5′-phosphosulfate transporter, PAPST2. J Biol Chem 281:10945–10953

    Article  CAS  PubMed  Google Scholar 

  • Kamiyama S, Ichimiya T, Ikehara Y, Takase T, Fujimoto I, Suda T, Nakamori S, Nakamura M, Nakayama F, Irimura T, Nakanishi H, Watanabe M, Narimatsu H, Nishihara S (2011) Expression and the role of 3′-phosphoadenosine 5′-phosphosulfate transporters in human colorectal carcinoma. Glycobiology 21:235–246

    Article  CAS  PubMed  Google Scholar 

  • Keller KM, Brauer PR, Keller JM (1989) Modulation of cell surface heparan sulfate structure by growth of cells in the presence of chlorate. Biochemistry 28:8100–8107

    Article  CAS  PubMed  Google Scholar 

  • Kimelman D (2006) Mesoderm induction: from caps to chips. Nat Rev Genet 7:360–372

    Article  CAS  PubMed  Google Scholar 

  • Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902

    Article  CAS  PubMed  Google Scholar 

  • Lanner F, Lee KL, Sohl M, Holmborn K, Yang H, Wilbertz J, Poellinger L, Rossant J, Farnebo F (2010) Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells 28:191–200

    CAS  PubMed  Google Scholar 

  • Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224:299–311

    Article  CAS  PubMed  Google Scholar 

  • Loebel DA, Watson CM, De Young RA, Tam PP (2003) Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 264:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nairn AV, Kinoshita-Toyoda A, Toyoda H, Xie J, Harris K, Dalton S, Kulik M, Pierce JM, Toida T, Moremen KW, Linhardt RJ (2007) Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J Proteome Res 6:4374–4387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishihara S (2010) Glycosyltransferases and transporters that contribute to proteoglycan synthesis in Drosophila: identification and functional analyses using the heritable and inducible RNAi system. Methods Enzymol 480:323–335

    Article  CAS  PubMed  Google Scholar 

  • Pera MF, Tam PP (2010) Extrinsic regulation of pluripotent stem cells. Nature 465:713–720

    Article  CAS  PubMed  Google Scholar 

  • Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708

    Article  CAS  PubMed  Google Scholar 

  • Reichsman F, Smith L, Cumberledge S (1996) Glycosami-noglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J Cell Biol 135:819–827

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Okishio K, Ui-Tei K, Saigo K, Kinoshita-Toyoda A, Toyoda H, Nishimura T, Suda Y, Hayasaka M, Hanaoka K, Hitoshi S, Ikenaka K, Nishihara S (2008) Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J Biol Chem 283:3594–3606

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Hirano T, Ichimiya T, Wakao M, Hirano K, Kinoshita-Toyoda A, Toyoda H, Suda Y, Nishihara S (2009) The 3′-phosphoadenosine 5′-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. PLoS One 4:e8262

    Article  PubMed Central  PubMed  Google Scholar 

  • Sasaki N, Hirano T, Kobayashi K, Toyoda M, Miyakawa Y, Okita H, Kiyokawa N, Akutsu H, Umezawa A, Nishihara S (2010) Chemical inhibition of sulfation accelerates neural differentiation of mouse embryonic stem cells and human induced pluripotent stem cells. Biochem Biophys Res Commun 401:480–486

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  CAS  PubMed  Google Scholar 

  • Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 13:703–712

    Article  Google Scholar 

  • Ueyama M, Takemae H, Ohmae Y, Yoshida H, Toyoda H, Ueda R, Nishihara S (2008) Functional analysis of proteoglycan galactosyltransferase II RNA interference mutant flies. J Biol Chem 283:6076–6084

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam KV (2003) Human 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency. IUBMB Life 55:1–11

    CAS  PubMed  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003a) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  CAS  PubMed  Google Scholar 

  • Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003b) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2:183–186

    Google Scholar 

  • Yoshikawa Y, Fujimori T, McMahon AP, Takada S (1997) Evidence that absence of Wnt-3a signaling promotes neutralization instead of paraxial mesoderm development in the mouse. Dev Biol 183:234–242

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Nishihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nishihara, S. (2012). Accelerated Neural Differentiation of Human Induced Pluripotent Stem Cells Using Chlorate Treatment. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 7. Stem Cells and Cancer Stem Cells, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4285-7_24

Download citation

Publish with us

Policies and ethics