Skip to main content

Stem Cells and Stress Injury: Role of Arginine Decarboxylase

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 7

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 7))

  • 1134 Accesses

Abstract

The use of stem cells in cell replacement therapy for neurodegenerative diseases has received a great deal of scientific and public interest in recent years. Oxidative stress, toxic byproducts, which prevails in the microenvironment during the diseased condition, may limit the survival of the transplanted stem cells affecting tissue regeneration and even longevity. Recently, it has become clear that balanced regulation of reactive oxygen species is of critical significance for cell fate determination as well as for stem cell differentiation, function, and survival following transplantation in injured tissues. Recent evidences suggested that genetically modified stem cells with antioxidant genes could exert stem cell protection and their potential for central nervous system (CNS) maladies treatment. Incorporating this knowledge into designs of novel approaches for stem cell protection is a major issue now. Polyamines are ubiquitous components in all living organisms that play essential roles in growth and signal transduction. The polyamine biosynthetic pathway is established as a valid target for the synthesis of drugs. Several comprehensive review articles have described arginine decarboxylase (ADC) as a component of the polyamine pathways metabolizing arginine and the presence of ADC as a means of generating agmatine which is an endogenous primary amine and a novel neuromodulator and possess neuroprotective properties. The presence of an ADC-regulated pathway to agmatine synthesis would also need to be considered in the interpretation of studies in which gene transfer approaches to increase or decrease agmatine levels both in in vitro and in vivo studies. Agmatine synthesized from the decarboxylation of l-arginine catalysed by arginine decarboxylase (ADC). Recently it was demonstrated that retrovirus containing ADC gene transfer which can synthesize agmatine endogenously conferred protection against toxic insult in neural stem cells. This article summarizes the results demonstrating the various gene transfer effects which can allow for stem cell protection. This review unravels the impact for development and design of genetically engineered stem cells for future cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aricioglu F, Regunathan S, Piletz JE (2003) Is agmatine an endogenous factor against stress? Ann N Y Acad Sci 1009:127–132

    Article  CAS  PubMed  Google Scholar 

  • Baud L, Ardaillou R (1986) Reactive oxygen species: production and role in the kidney. Am J Physiol 251:F765–F776

    CAS  PubMed  Google Scholar 

  • Bokara KK, Kwon KH, Nho Y, Lee WT, Park KA, Lee JE (2011) Retroviral expression of arginine decarboxylase attenuates oxidative burden in mouse cortical neural stem cells. Stem Cells Dev 20:527–537

    Article  CAS  PubMed  Google Scholar 

  • Epperly MW, Guo H, Shen H, Niu Y, Zhang X, Jefferson M, Sikora CA, Greenberger JS (2004) Bone marrow origin of cells with capacity for homing and differentiation to esophageal squamous epithelium. Radiat Res 162:233–240

    Article  CAS  PubMed  Google Scholar 

  • Goracke-Postle CJ, Nguyen HO, Stone LS, Fairbanks CA (2006) Release of tritiated agmatine from spinal synaptosomes. Neuroreport 17:13–17

    Article  PubMed  Google Scholar 

  • Greenberger JS, Epperly MW, Gretton J, Jefferson M, Nie S, Bernarding M, Kagan V, Guo HL (2003) Radioprotective gene therapy. Curr Gene Ther 3:183–195

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410–7425

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Karpatkin S, Basch RS (2006) Hematopoiesis and stem cell renewal in long-term bone marrow cultures containing catalase. Blood 107:1837–1846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Fischer A, Cavazzana-Calvo M (2002) Gene therapy of X-linked severe combined immunodeficiency. Int J Hematol 76:295–298

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Lee JE, Kim CY, Seong GJ (2007) Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line. BMC Neurosci 8:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Iscove NN, Nawa K (1997) Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion. Curr Biol 7:805–808

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    Article  CAS  PubMed  Google Scholar 

  • Janne J, Alhonen L, Leinonen P (1991) Polyamines: from molecular biology to clinical applications. Ann Med 23:241–259

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Yang MZ, Kwon KH, Yenari MA, Choi YJ, Lee WT, Park KA, Lee JE (2010) Endogenous agmatine inhibits cerebral vascular matrix metalloproteinases expression by regulating activating transcription factor 3 and endothelial nitric oxide synthesis. Curr Neurovasc Res 7:201–212

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Cooper DD, Hayes SF, Spangrude GJ (1998) Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux. Blood 91:4106–4117

    CAS  PubMed  Google Scholar 

  • Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE (2004) Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol 189:122–130

    Article  CAS  PubMed  Google Scholar 

  • Lee GT, Ha H, Lee HC, Cho YD (2003) Agmatine reduces hydrogen peroxide in mesangial cells under high glucose conditions. J Biochem Mol Biol 36:251–257

    Article  CAS  PubMed  Google Scholar 

  • Maze R, Carney JP, Kelley MR, Glassner BJ, Williams DA, Samson L (1996) Increasing DNA repair methyltransferase levels via bone marrow stem cell transduction rescues mice from the toxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea, a chemotherapeutic alkylating agent. Proc Natl Acad Sci USA 93:206–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon SU, Kwon KH, Kim JH, Bokara KK, Park KA, Lee WT, Lee JE (2010) Recombinant hexahistidine arginine decarboxylase (hisADC) induced endogenous agmatine synthesis during stress. Mol Cell Biochem 345:53–60

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Shen H, Epperly M, Zhang X, Nie S, Cao S, Greenberger JS (2005) Protection of esophageal multi-lineage progenitors of squamous epithelium (stem cells) from ionizing irradiation by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. In Vivo 19:965–974

    CAS  PubMed  Google Scholar 

  • Regunathan S, Piletz JE (2003) Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci 1009:20–29

    Article  CAS  PubMed  Google Scholar 

  • Regunathan S, Reis DJ (2000) Characterization of arginine decarboxylase in rat brain and liver: distinction from ornithine decarboxylase. J Neurochem 74:2201–2208

    Article  CAS  PubMed  Google Scholar 

  • Rogers S, Lowenthal A, Terheggen HG, Columbo JP (1973) Induction of arginase activity with the Shope papilloma virus in tissue culture cells from an argininemic patient. J Exp Med 137:1091–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL et al (1990) Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323:570–578

    Article  CAS  PubMed  Google Scholar 

  • Satriano J, Schwartz D, Ishizuka S, Lortie MJ, Thomson SC, Gabbai F, Kelly CJ, Blantz RC (2001) Suppression of inducible nitric oxide generation by agmatine aldehyde: beneficial effects in sepsis. J Cell Physiol 188:313–320

    Article  CAS  PubMed  Google Scholar 

  • Song HW, Kumar BK, Kim SH, Jeon YH, Lee YA, Lee WT, Park KA, Lee JE (2011) Agmatine enhances neurogenesis by increasing ERK1/2 expression, and suppresses astrogenesis by decreasing BMP 2,4 and SMAD 1,5,8 expression in subventricular zone neural stem cells. Life Sci 89:439–449

    Article  CAS  PubMed  Google Scholar 

  • Tabin CJ, Hoffmann JW, Goff SP, Weinberg RA (1982) Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene. Mol Cell Biol 2:426–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M, Suda T (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7:391–402

    Article  CAS  PubMed  Google Scholar 

  • Toninello A, Salvi M, Mondovi B (2004) Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated pathway of apoptosis. Curr Med Chem 11:2349–2374

    Article  CAS  PubMed  Google Scholar 

  • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, Gilliland DG (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  PubMed  Google Scholar 

  • Wang WP, Iyo AH, Miguel-Hidalgo J, Regunathan S, Zhu MY (2006) Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res 1084:210–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang XC, Reis DJ (1999) Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J Pharmacol Exp Ther 288:544–549

    CAS  PubMed  Google Scholar 

  • Yuan Y, Yu H, Boyer MJ, Song X, Cao S, Shen H, Cheng T (2006) Hematopoietic stem cells are not the direct target of spontaneous leukemic transformation in p18(INK4C)-null reconstituted mice. Cancer Res 66:343–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0017276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Eun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, B.K., Lee, J.E. (2012). Stem Cells and Stress Injury: Role of Arginine Decarboxylase. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 7. Stem Cells and Cancer Stem Cells, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4285-7_18

Download citation

Publish with us

Policies and ethics