Skip to main content

Maintenance of Pluripotency in Mouse Stem Cells: Use of Hyaluronan in the Long-Term Culture

  • Chapter
  • First Online:

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 7))

Abstract

The use of embryonic stem (ES) cells in regenerative medicine is one of the most important promises of this decade. The knowledge about culture medium, isolation protocols and pluripotency related genes is growing but their therapeutic use is still restricted by a risk of teratoma formation. To test the hypothesis that some cells remain undifferentiated after a differentiation culture process, we have electroporated mouse ES cells with a construct comprising the mTert promoter coupled to green fluorescent protein (GFP). When ES cells colonies are in culture, they express the green fluorescent protein as a consequence of their telomerase activity. After LIF removal a natural differentiation process into embryoid bodies (EB) occurs, such that the GFP signal gradually diminishes due to this differentiation. However, after 2 weeks of incubation, we could observe small groups of fluorescent cells remaining in the differentiated monolayer. After isolation and expansion of these groups under ES cell culture conditions, ES cell morphology was recovered. Molecular analysis showed that after several passages in ES medium, pluripotency quality characteristics of these cells are completely recovered. According to our results, a specific screening of differentiated cells should be performed before their therapeutic use to avoid the risk of teratoma formation stimulated by an adequate environment. Moreover, to maintain undifferentiated stem cells in defined conditions is of critical importance to improve their in vitro culture. We evaluated the effects of the replacement of fibroblast feeder layer (mEF) by gelatin or the glycosaminoglycan hyaluronan (HA). Long-term culture onto HA was more effective in maintaining the pluripotent state of mES cells when compared to gelatin. The rate of terminal differentiation was the highest onto mEF, intermediate onto HA and reduced onto gelatin. In addition, our findings strongly suggest that the use of hyaluronan, without feeder cells, may offer a valuable alternative for unifying and standardizing the conditions for long-term defined culture conditions of undifferentiated mES cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albanell J, Han W, Mellado B, Gunawardane R, Scher HI, Dmitrovsky E, Moore MA (1996) Telomerase activity is repressed during differentiation of maturation-sensitive but not resistant human tumor cell lines. Cancer Res 56:1503–1508

    CAS  PubMed  Google Scholar 

  • Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845

    Article  CAS  PubMed  Google Scholar 

  • Armstrong L, Lako M, Lincoln J, Cairns PM, Hole N (2000) mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mech Dev 97:109–116

    Article  CAS  PubMed  Google Scholar 

  • Armstrong L, Saretzki G, Peters H, Wappler I, Evans J, Hole N, von Zglinicki T, Lako M (2005) Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 23:516–529

    Article  CAS  PubMed  Google Scholar 

  • Belema Bedada F, Technau A, Ebelt H, Schulze M, Braun T (2005) Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells. Mol Cell Biol 25:9509–9519

    Article  PubMed Central  PubMed  Google Scholar 

  • Brickman JM, Burdon TG (2002) Pluripotency and tumorigenicity. Nat Genet 32:557–558

    Article  CAS  PubMed  Google Scholar 

  • Brown JJ, Papaioannou VE (1993) Ontogeny of hyaluronan secretion during early mouse development. Development 117:483–492

    CAS  PubMed  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  CAS  PubMed  Google Scholar 

  • Conover JC, Ip NY, Poueymirou WT, Bates B, Goldfarb MP, DeChiara TM, Yancopoulos GD (1993) Ciliary neurotrophic factor maintains the pluripotentiality of embryonic stem cells. Development 119:559–565

    CAS  PubMed  Google Scholar 

  • Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dyce PW, Wen L, Li J (2006) In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 8:384–390

    Article  CAS  PubMed  Google Scholar 

  • Ensenat-Waser R, Santana A, Vicente-Salar N, Cigudosa JC, Roche E, Soria B, Reig JA (2006) Isolation and characterization of residual undifferentiated mouse embryonic stem cells from embryoid body cultures by fluorescence tracking. In Vitro Cell Dev Biol Anim 42:115–123

    Article  CAS  PubMed  Google Scholar 

  • Fenderson BA, Stamenkovic I, Aruffo A (1993) Localization of hyaluronan in mouse embryos during implantation, gastrulation and organogenesis. Differentiation 54:85–98

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  CAS  PubMed  Google Scholar 

  • Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A 104:11298–11303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenlee AR, Kronenwetter-Koepel TA, Kaiser SJ, Liu K (2005) Comparison of Matrigel and gelatin substrata for feeder-free culture of undifferentiated mouse embryonic stem cells for toxicity testing. Toxicol In Vitro 19:389–397

    Article  CAS  PubMed  Google Scholar 

  • Hilario E, Alvarez A, Simon J, Garcia-Sanz M, Lacalle J, Arechaga J (2001) Presence of four stem cell populations in monolayer cultures derived from teratocarcinoma embryoid bodies. In Vivo 15:217–226

    CAS  PubMed  Google Scholar 

  • Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155

    Article  CAS  PubMed  Google Scholar 

  • Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106:1901–1910

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Hande MP, Sabapathy K (2005) Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation- and stress-induced p53-dependent apoptosis. J Cell Sci 118:819–829

    Article  CAS  PubMed  Google Scholar 

  • Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Article  CAS  PubMed  Google Scholar 

  • Mannello F, Tonti GA (2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25:1603–1609

    Article  CAS  PubMed  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  CAS  PubMed  Google Scholar 

  • Moore H (2006) The medium is the message. Nat Biotechnol 24:160–161

    Article  CAS  PubMed  Google Scholar 

  • Mullegger J, Lepperdinger G (2002) Hyaluronan is an abundant constituent of the extracellular matrix of Xenopus embryos. Mol Reprod Dev 61:312–316

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12:2048–2060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Shea KS (2004) Self-renewal vs. differentiation of mouse embryonic stem cells. Biol Reprod 71:1755–1765

    Article  PubMed  Google Scholar 

  • Palasz AT, Rodriguez-Martinez H, Beltran-Brena P, Perez-Garnelo S, Martinez MF, Gutierrez-Adan A, De la Fuente J (2006) Effects of hyaluronan, BSA, and serum on bovine embryo in vitro development, ultrastructure, and gene expression patterns. Mol Reprod Dev 73:1503–1511

    Article  CAS  PubMed  Google Scholar 

  • Palasz AT, Brena PB, Martinez MF, Perez-Garnelo SS, Ramirez MA, Gutierrez-Adan A, De la Fuente J (2008) Development, molecular composition and freeze tolerance of bovine embryos cultured in TCM-199 supplemented with hyaluronan. Zygote 16:39–47

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Li J, Zhou Y, Zheng H, Pei D (2006) A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB J 20:1730–1732

    Google Scholar 

  • Pericuesta E, Ramirez MA, Villa-Diaz A, Relano-Gines A, Torres JM, Nieto M, Pintado B, Gutierrez-Adan A (2006) The proximal promoter region of mTert is sufficient to regulate telomerase activity in ES cells and transgenic animals. Reprod Biol Endocrinol 4:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramirez MA, Pericuesta E, Fernandez-Gonzalez R, Moreira P, Pintado B, Gutierrez-Adan A (2006) Transcriptional and post-transcriptional regulation of retrotransposons IAP and MuERV-L affect pluripotency of mice ES cells. Reprod Biol Endocrinol 4:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramirez MA, Pericuesta E, Fernandez-Gonzalez R, Pintado B, Gutierrez-Adan A (2007) Inadvertent presence of pluripotent cells in monolayers derived from differentiated embryoid bodies. Int J Dev Biol 51:397–408

    Article  CAS  PubMed  Google Scholar 

  • Rao RR, Stice SL (2004) Gene expression profiling of embryonic stem cells leads to greater understanding of pluripotency and early developmental events. Biol Reprod 71:1772–1778

    Article  CAS  PubMed  Google Scholar 

  • Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Salustri A, Camaioni A, Di Giacomo M, Fulop C, Hascall VC (1999) Hyaluronan and proteoglycans in ovarian follicles. Hum Reprod Update 5:293–301

    Article  CAS  PubMed  Google Scholar 

  • Stojkovic M, Kolle S, Peinl S, Stojkovic P, Zakhartchenko V, Thompson JG, Wenigerkind H, Reichenbach HD, Sinowatz F, Wolf E (2002) Effects of high concentrations of hyaluronan in culture medium on development and survival rates of fresh and frozen-thawed bovine embryos produced in vitro. Reproduction 124:141–153

    Article  CAS  PubMed  Google Scholar 

  • Toole BP (1997) Hyaluronan in morphogenesis. J Intern Med 242:35–40

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005a) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    Article  CAS  PubMed  Google Scholar 

  • Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005b) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ramos-Ibeas, P., Pericuesta, E., Miranda, A., Fernández-González, R., Gutiérrez-Adán, A., Ramírez, M.Á. (2012). Maintenance of Pluripotency in Mouse Stem Cells: Use of Hyaluronan in the Long-Term Culture. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 7. Stem Cells and Cancer Stem Cells, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4285-7_11

Download citation

Publish with us

Policies and ethics