Skip to main content

An Optimization-Based Iterative Approach to Tetrahedral Mesh Smoothing

  • Chapter
Image-Based Geometric Modeling and Mesh Generation

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 3))

Abstract

The optimal Delaunay triangulation (ODT) is an effective approach in improving the quality of inner vertices of a tetrahedral mesh. Recently it had been extended boundary-optimized Delaunay triangulation (B-ODT), in which both inner and boundary vertices are repositioned by analytically minimizing the \(\mathcal{L}^{1}\) error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In the present work, we describe a smoothing method that is based on the B-ODT method but has better performance. We smooth the mesh in an edge-by-edge fashion by adjusting each pair of vertices of every edge. This method has the volume-preserving and sharp-feature-preserving properties. A number of experiments are included to demonstrate the performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Djidjev H (2000) Force-directed methods for smoothing unstructured triangular and tetrahedral meshes. In: 9th international meshing roundtable, pp 395–406

    Google Scholar 

  2. Phillippe P, Baker T (2001) A comparison of triangle quality measures. In: 10th international meshing roundtable, pp 327–340

    Google Scholar 

  3. Ohtake Y, Belyaev A, Bogaevski I (2001) Mesh regularization and adaptive smoothing. Comput Aided Des 33(11):789–800

    Article  Google Scholar 

  4. Knupp PM (2002) Algebraic mesh quality metrics. SIAM J Sci Comput 23(1):193–218

    Article  MathSciNet  Google Scholar 

  5. Knupp PM (2003) Algebraic mesh quality metrics for unstructured initial meshes. Finite Elem Anal Des 39(3):217–241

    Article  MATH  Google Scholar 

  6. Brewer M, Freitag Diachin L, Knupp P, Leurent T, Melander D (2003) The mesquite mesh quality improvement toolkit. In: 12th international meshing roundtable, pp 239–250

    Google Scholar 

  7. Babuska I, Aziz AK (1976) On the angle condition in the finite element method. SIAM J Numer Anal 13(2):214–226

    Article  MathSciNet  MATH  Google Scholar 

  8. Shewchuk JR (2002) What is a good linear element? Interpolation, conditioning, and quality measures. In: 11th international meshing roundtable, pp 115–126

    Google Scholar 

  9. Freitag LA, Ollivier-Gooch C (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Eng 40(21):3979–4002

    Article  MathSciNet  MATH  Google Scholar 

  10. Klingner BM, Shewchuk JR (2008) Aggressive tetrahedral mesh improvement. In: 16th international meshing roundtable. Springer, Berlin, pp 3–23

    Chapter  Google Scholar 

  11. Chew LP (1997) Guaranteed-quality Delaunay meshing in 3D. In: 13th annual symposium on computational geometry, pp 391–393

    Google Scholar 

  12. Nave D, Chrisochoides N, Chew LP (2004) Guaranteed-quality parallel Delaunay refinement for restricted polyhedral domains. Comput Geom, Theory Appl 28(2–3):191–215

    Article  MathSciNet  MATH  Google Scholar 

  13. Escobar JM, Montenegro R, Montero G, Rodríguez E, Gonzáez-Yuste JM (2005) Smoothing and local refinement techniques for improving tetrahedral mesh quality. Comput Struct 83(28–30):2423–2430

    Article  Google Scholar 

  14. Bank RE, Smith RK (1997) Mesh smoothing using a posteriori error estimates. SIAM J Numer Anal 34(3):979–997

    Article  MathSciNet  MATH  Google Scholar 

  15. Freitag LA (1997) On combining Laplacian and optimization-based mesh smoothing techniques. In: Trends in unstructured mesh generation. AMD, vol 220, pp 37–43

    Google Scholar 

  16. Canann SA, Tristano JR, Staten ML (1998) An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral and quad-dominant meshes. In: 7th international meshing roundtable, pp 419–494

    Google Scholar 

  17. Herrmann LR (1976) Laplacian-isoparametric grid generation scheme. J Eng Mech Div 102(5):749–907

    Google Scholar 

  18. Field DA (1988) Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods 4(6):709–712

    Article  MATH  Google Scholar 

  19. Hansbo P (1995) Generalized Laplacian smoothing of unstructured grids. Commun Numer Methods Eng 11(5):455–464

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou T, Shimada K (2000) An angle-based approach to two-dimensional mesh smoothing. In: 9th international meshing roundtable, pp 373–384

    Google Scholar 

  21. Xu H, Newman TS (2006) An angle-based optimization approach for 2D finite element mesh smoothing. Finite Elem Anal Des 42(13):1150–1164

    Article  MathSciNet  Google Scholar 

  22. Yu Z, Holst MJ, McCammon JA (2008) High-fidelity geometric modeling for biomedical applications. Finite Elem Anal Des 44(11):715–723

    Article  MathSciNet  Google Scholar 

  23. Du Q, Wang D (2003) Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. Int J Numer Methods Eng 56:1355–1373

    Article  MathSciNet  MATH  Google Scholar 

  24. Freitag L, Plassmann P (2001) Local optimization-based untangling algorithms for quadrilateral meshes. In: 10th international meshing roundtable, pp 397–406

    Google Scholar 

  25. Li X, Freitag LA, Freitag LA (1999) Optimization-based quadrilateral and hexahedral mesh untangling and smoothing techniques. Technical report, Argonne National Laboratory

    Google Scholar 

  26. Knupp PM (2001) Hexahedral and tetrahedral mesh untangling. Eng Comput 17(3):261–268

    Article  MATH  Google Scholar 

  27. Knupp PM (2000) Hexahedral mesh untangling & algebraic mesh quality metrics. In: 9th international meshing roundtable, pp 173–183

    Google Scholar 

  28. Delanaye M, Hirsch C, Kovalev K (2003) Untangling and optimization of unstructured hexahedral meshes. Comput Math Math Phys 43(6):807–814

    MathSciNet  Google Scholar 

  29. Menédez-Díaz A, González-Nicieza C, Álvarez-Vigil AE (2005) Hexahedral mesh smoothing using a direct method. Comput Geosci 31(4):453–463

    Article  Google Scholar 

  30. Vartziotis D, Athanasiadis T, Goudas I, Wipper J (2008) Mesh smoothing using the geometric element transformation method. Comput Methods Appl Mech Eng 197(45–48):3760–3767

    Article  MATH  Google Scholar 

  31. Vartziotis D, Wipper J, Schwald B (2009) The geometric element transformation method for tetrahedral mesh smoothing. Comput Methods Appl Mech Eng 199(1–4):169–182

    Article  MathSciNet  MATH  Google Scholar 

  32. Vartziotis D, Wipper J (2011) A dual element based geometric element transformation method for all-hexahedral mesh smoothing. Comput Methods Appl Mech Eng 200(9–12):1186–1203

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu K, Cheng Z-Q, Wang Y, Xiong Y, Zhang H (2009) Quality encoding for tetrahedral mesh optimization. Comput Graph 33(3):250–261. IEEE international conference on shape modelling and applications 2009

    Article  Google Scholar 

  34. Sirois Y, Dompierre J, Vallet M-G, Guibault F (2010) Hybrid mesh smoothing based on Riemannian metric non-conformity minimization. Finite Elem Anal Des 46(1–2):47–60

    Article  MathSciNet  Google Scholar 

  35. Parthasarathy V, Kodiyalam S (1991) A constrained optimization approach to finite element mesh smoothing. Finite Elem Anal Des 9(4):309–320

    Article  MATH  Google Scholar 

  36. Canann SA, Stephenson MB, Blacker T (1993) Optismoothing: an optimization-driven approach to mesh smoothing. Finite Elem Anal Des 13(2–3):185–190

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen CL, Szema KY, Chakravarthy SR (1995) Optimization of unstructured grid. In: 33rd aerospace sciences meeting and exhibit, Reno, NV, January, pp 1–10. AIAA 95-0217

    Google Scholar 

  38. Zavattieri PD, Dari EA, Buscaglia GC (1996) Optimization strategies in unstructured mesh generation. Int J Numer Methods Eng 39(12):2055–2071

    Article  MATH  Google Scholar 

  39. Freitag Diachin L, Knupp P (1999) Tetrahedral element shape optimization via the Jacobian determinant and condition number. In: 8th international meshing roundtable, pp 247–258

    Google Scholar 

  40. Knupp PM (2000) Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I—a framework for surface mesh optimization. Int J Numer Methods Eng 48(3):401–420

    Article  MATH  Google Scholar 

  41. Freitag LA, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Methods Eng 49(1–2):109–125

    Article  MATH  Google Scholar 

  42. Freitag LA, Knupp PM (2002) Tetrahedral mesh improvement via optimization of the element condition number. Int J Numer Methods Eng 53(6):1377–1391

    Article  MathSciNet  MATH  Google Scholar 

  43. Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Comput Methods Appl Mech Eng 192(25):2775–2787

    Article  MATH  Google Scholar 

  44. Mezentsev A (2004) A generalized graph-theoretic mesh optimization model. In: 13th international meshing roundtable, pp 255–264

    Google Scholar 

  45. Chen L, Xu J (2004) Optimal Delaunay triangulations. J Comput Math 22(2):299–308

    MathSciNet  MATH  Google Scholar 

  46. Tournois J, Wormser C, Alliez P, Desbrun M (2009) Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Trans Graph 28:75–1759

    Article  Google Scholar 

  47. Labelle F, Shewchuk JR (2007) Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans Graph 26:57–15710

    Article  Google Scholar 

  48. Zhang Y, Hughes TJR, Bajaj CL (2010) An automatic 3D mesh generation method for domains with multiple materials. Comput Methods Appl Mech Eng 199(5–8):405–415

    Article  MATH  Google Scholar 

  49. Molino N, Bridson R, Teram J, Fedkiw R (2003) A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: 12th international meshing roundtable, pp 103–114

    Google Scholar 

  50. Si H, Gärtner K, Fuhrmann J (2010) Boundary conforming Delaunay mesh generation. Comput Math Math Phys 50(1):38–53

    Article  Google Scholar 

Download references

Acknowledgements

The work described was supported in part by an NIH Award (Number R15HL103497) from the National Heart, Lung, and Blood Institute (NHLBI) and by a subcontract from the National Biomedical Computation Resource (NIH Award Number P41 RR08605). The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyun Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gao, Z., Yu, Z., Wang, J. (2013). An Optimization-Based Iterative Approach to Tetrahedral Mesh Smoothing. In: Zhang, Y. (eds) Image-Based Geometric Modeling and Mesh Generation. Lecture Notes in Computational Vision and Biomechanics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4255-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4255-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4254-3

  • Online ISBN: 978-94-007-4255-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics