Skip to main content

Improved Damage Tolerance Properties of Aerospace Structures by the Addition of Carbon Nanotubes

  • Chapter
  • First Online:

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 188))

Abstract

The potential use of carbon nanotubes (CNTs) in aerospace structures is considered in this chapter. Various studies are presented on how carbon nanotubes may be the driving force of a new generation of aerospace structures with superior damage tolerance properties, which in turn will lead to novel composite structures for the aerospace industry. This chapter examines the inclusion of CNTs in aerospace grade resins and their reinforcing mechanisms. The conclusion reached is that the main reinforcing mechanisms of carbon nanotubes are: fibre breakage, fibre pull-out, crack bridging and crazing. These are responsible for the improvement of the mechanical properties of composite materials and their structures. In other words, the use of carbon nanotubes in aerospace composite structures has been proven to increase fracture toughness, impact strength, post-impact properties and the fatigue life of composites, all these attributes making them more damage tolerant. Finally, a new generation of fibres and fabrics with CNTs grafted or grown on them are presented. They are expected to play a key role in evolution of aerospace composite structures, overcoming any processing issues that have risen due to high CNT-polymer viscosities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baker, A.: Development and potential of advanced fibre composites for aerospace applications. Mater. Forum 11, 217–231 (1988)

    Google Scholar 

  • Baker, A., Dutton, S., Kelly, D. (eds.): Composite Materials for Aircraft Structures. AIAA Education Series, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2004)

    Google Scholar 

  • Bekyarova, E., et al.: Functionalized single-walled carbon nanotubes for carbon fibre-epoxy composites. J. Phys. Chem. C 111, 17865–17871 (2007a)

    Article  Google Scholar 

  • Bekyarova, E., et al.: Multiscale carbon nanotube – carbon fibre reinforcement for advanced epoxy composites. Langmuir 23, 3970–3974 (2007b)

    Article  Google Scholar 

  • Broek, D.: The Practical Use of Fracture Mechanics. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  • Chow, W.S., Tan, P.L.: Epoxy/multiwall carbon nanotube nanocomposites prepared by sonication and planetary mixing technique. J. Reinf. Plast. Compos. 29, 2331–2342 (2010)

    Article  Google Scholar 

  • Davis, D., et al.: Improvements in mechanical properties of a carbon fibre epoxy composite using nanotube science and technology. Compos. Struct. 92, 2653–2662 (2010)

    Article  Google Scholar 

  • Fidelus, J.D., et al.: Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos. Part A 36, 1555–1561 (2005)

    Article  Google Scholar 

  • Fiedler, B., et al.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66, 3115–3125 (2006)

    Article  Google Scholar 

  • Ganguli, S., et al.: Effect of loading and surface modification of MWCNTs on the fracture behaviour of epoxy nanocomposites. J. Reinf. Plast Compos. 25, 175–188 (2008)

    Article  Google Scholar 

  • Garcia, E.J., et al.: Fabrication and multifuctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos. Sci. Technol. 68, 2034–2041 (2008a)

    Article  Google Scholar 

  • Garcia, E.J., et al.: Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. Part A 39, 1065–1070 (2008b)

    Article  Google Scholar 

  • Geng, Y., et al.: Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. Part A 39, 1876–1883 (2008)

    Article  MathSciNet  Google Scholar 

  • Godara, A., et al.: Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fibre/epoxy composites. Carbon 47, 2914–2923 (2009)

    Article  Google Scholar 

  • Gojny, F.H., et al.: Carbon nanotube-reinforced epoxy-composites:enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64, 2363–2371 (2004)

    Article  Google Scholar 

  • Gojny, F.H., et al.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study. Compos. Sci. Technol. 65, 2300–2313 (2005)

    Article  Google Scholar 

  • Gower, M.R.L., Shaw, R.M.: Assessment of the applicability of compression after impact (CAI) and open hole tension (OHT) methods for use under fatigue loading. In: ECCM 13 Conference Proceedings, Stockholm, Sweden, 2–5 June, 2008

    Google Scholar 

  • Grimmer, G.S., Dharan, C.K.H.: High-cycle fatigue life extension of glass fibre/ polymer composites with carbon nanotubes. J.Wuham Univ. Technol. Mater. Sci. 24, 167–173 (2009)

    Article  Google Scholar 

  • Grimmer, G.S., Dharan, C.K.H.: Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fibre/polymer composites. Compos. Sci. Technol. 70, 901–908 (2010)

    Article  Google Scholar 

  • Inam, F., et al.: Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibres. J. Nanomater. 2010, 12 (2010)

    Article  Google Scholar 

  • Karapappas, P.: Improvement of mechanical, fracture and fatigue properties of FRPs with the addition of CNTs in the matrix. Ph.D. thesis, University of Patras, Greece (2009)

    Google Scholar 

  • Karapppas, P., et al.: Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J. Compos. Mater. 43, 977–985 (2009)

    Article  Google Scholar 

  • Kepple, K.L., et al.: Improved fracture toughness of carbon fibre composite functionalized with multi walled carbon nanotubes. Carbon 46, 2026–2033 (2008)

    Article  Google Scholar 

  • Kim, M.G., Hong, J.S., Kim, C.G.: Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperature. Compos. Part A 39, 647–654 (2008)

    Article  Google Scholar 

  • Kostopoulos, V., et al.: Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos. Sci. Technol. 70, 553–563 (2010)

    Article  Google Scholar 

  • Liu, L., Wagner, H.D.: Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Compos. Sci. Technol. 65, 1861–1868 (2005)

    Article  Google Scholar 

  • Mathur, R.B., et al.: Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68, 1608–1615 (2008)

    Article  Google Scholar 

  • Newaz, G., Sierakowski, R.L.: Damage Tolerance in Advanced Composites. Technomic Publishing AG, Basel (1995)

    Google Scholar 

  • Niu, M.C.-Y.: Airframe Structural Design. Conlimit Press Ltd, Hong Kong (1995)

    Google Scholar 

  • Qian, H., et al.: Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Compos. Part A 41, 1107–1114 (2010)

    Article  Google Scholar 

  • Ren, Y., et al.: Tension-tension fatigue behaviour of undirectional single-walled carbon nanotube reinforced epoxy composite. Carbon 41, 2177–2179 (2003)

    Article  Google Scholar 

  • Romhany, G., Szebenyi, G.: Interlaminar crack propagation in MWCNT/fibre reinforced hybrid composites. Express Polym. Lett. 3, 145–151 (2009)

    Article  Google Scholar 

  • SACMA: Recommended Method 2R-94. The Suppliers of Advanced Composite Materials Association, Arlington (1994)

    Google Scholar 

  • Sager, R.J., et al.: Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fibre in an epoxy matrix. Compos. Sci. Technol. 69, 898–904 (2009)

    Article  Google Scholar 

  • Seyhan, A.T., Tanoglu, M., Schulte, K.: Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng. Fract. Mech. 75, 5151–5162 (2008)

    Article  Google Scholar 

  • Talreja, R.: Comprehensive Composite Materials. Volume 2, Fatigue of Polymer Matrix Composites. Elsevier, Oxford (2003)

    Google Scholar 

  • Thostenson, E.T., Chou, W.-T.: Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44, 3022–3029 (2006)

    Article  Google Scholar 

  • Thostenson, E.T., et al.: Carbon nanotube/carbon fibre hybrid multiscale composites. J. Appl. Phys. 69, 6034–6037 (2002)

    Article  Google Scholar 

  • Vavouliotis, A., et al.: Multistage fatigue life monitoring on carbon fibre reinforced polymers enhanced with multiwall carbon nanotubes. Plast. Rubbers Compos. 38, 124–130 (2009)

    Article  Google Scholar 

  • Veedu, V.P., et al.: Multifunctional composites using reinforced laminae with carbon-nantube forests. Nat. Mater. 5, 457–462 (2006)

    Article  Google Scholar 

  • Warrier, A., et al.: The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Compos. Part A 41, 532–538 (2010)

    Article  Google Scholar 

  • Wichmann, M.H.G., et al.: Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 73, 2346–2359 (2006)

    Article  Google Scholar 

  • Wicks, S.S., et al.: Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos. Sci. Technol. 70, 20–28 (2010)

    Article  Google Scholar 

  • Yaping, Z., et al.: Functionalized effect on carbon nanotube/epoxy nano-composites. Mater. Sci. Eng. A 435, 145–149 (2006)

    Article  Google Scholar 

  • Yokozeki, Y., Iwahori, Y., Ishiwata, S.: Matrix cracking behaviours in carbon fibre/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs). Compos. Part A 38, 917 (2007a)

    Article  Google Scholar 

  • Yokozeki, T., et al.: Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Compos. Part A 38, 2121–2130 (2007b)

    Article  Google Scholar 

  • Yokozeki, T., et al.: Fabrication of CNT-dispersed CFRP using length-controlled CNTs: measurement of CNT length and characterization of mechanical properties. Tsinghua Sci. Technol. 14, 100–104 (2009a)

    Article  Google Scholar 

  • Yokozeki, T., et al.: Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes. Compos. Sci. Technol. 69, 2268–2273 (2009b)

    Article  Google Scholar 

  • Yu, N., Zhang, Z.H., He, S.Y.: Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater. Sci. Eng. A 494, 380–384 (2008)

    Article  Google Scholar 

  • Zhang, W., Picu, R.C., Koratkar, N.: The effect of carbon nanotube dimensions and dispersion on the fatigue behaviour of epoxy nanocomposites. Nanotechnology 19, 285709 (2008)

    Article  Google Scholar 

  • Zhang, W., et al.: Heterogeneity in epoxy nanocomposites initiates crazing: significant improvements in fatigue resistance and toughening. Small 5, 1403–1407 (2009a)

    Article  Google Scholar 

  • Zhang, Q., et al.: Hierarchical composites of carbon nanotubes: influence of growth condition on fibre tensile properties. Compos. Sci. Technol. 69, 594–601 (2009b)

    Article  Google Scholar 

  • Zhou, Y., et al.: Fabrication and characterization of carbon/epoxy composites mixed with multi-wall carbon nanotubes. Mater. Sci. Eng. A 475, 157–165 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Karapappas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Karapappas, P., Tsotra, P. (2013). Improved Damage Tolerance Properties of Aerospace Structures by the Addition of Carbon Nanotubes. In: Paipetis, A., Kostopoulos, V. (eds) Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4246-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4246-8_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4245-1

  • Online ISBN: 978-94-007-4246-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics