Skip to main content

Stress Induced Changes in the Raman Spectrum of Carbon Nanostructures and Their Composites

  • Chapter
  • First Online:
Book cover Carbon Nanotube Enhanced Aerospace Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 188))

Abstract

Raman spectroscopy of Carbon nanostructures is fundamental in characterising the morphology and the interaction of the nanostructure with the environment. This work provides an outline of the Raman Vibrational modes for graphitic structures starting from graphite fibres, to single-wall carbon nanotubes to multiwall carbon nanotubes and finally to Single- and Multi-layer Graphene. Following a brief outline of the dependence of the force constant on applied deformation, the stress induced changes in the Raman spectrum of graphitic structures are subsequently discussed with a view to elucidating the reinforcing ability of the CNTs in a matrix and assessing the stress transfer at the CNT matrix interface. The possibilities of employing CNTs as stress sensors in composite materials are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arjyal, B.P., Katerelos, D.G., Filiou, C., Galiotis, C.: Measurement and modeling of stress concentration around a circular notch. Exp. Mech. 40(3), 248–255 (2000)

    Google Scholar 

  • Bahr, J.L., Yang, J., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E., Tour, J.M.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123(27), 6536–6542 (2001)

    Google Scholar 

  • Bandow, S., Hirahara, K., Hiraoka, T., Chen, G., Eklund, P.C., Iijima, S.: Turning peapods into double-walled carbon nanotubes. MRS Bull. 29(4), 239–241, 260–264 (2004)

    Google Scholar 

  • Barber, A.H., Zhao, Q., Wagner, H.D., Baillie, C.A.: Characterization of E-glass-polypropylene interfaces using carbon nanotubes as strain sensors. Compos. Sci. Technol. 64(13–14), 1915–1919 (2004)

    Google Scholar 

  • Belandria, E., Millot, M., Broto, J.M., Flahaut, E., Rodriguez, F., Valiente, R., Gonzalez, J.: Pressure dependence of Raman modes in double wall carbon nanotubes filled with 1D tellurium. Carbon 48(9), 2566–2572 (2010). doi:10.1016/j.carbon.2010.03.036

    Google Scholar 

  • Benoit, J.M., Buisson, J.P., Chauvet, O., Godon, C., Lefrant, S.: Low-frequency Raman studies of multiwalled carbon nanotubes: experiments and theory. Phys. Rev. B – Condens Matter Mater. Phys. 66(7), 734171–734174 (2002)

    Google Scholar 

  • Blighe, F.M., Young, K., Vilatela, J.J., Windle, A.H., Kinloch, I.A., Deng, L., Young, R.J., Coleman, J.N.: The effect of nanotube content and orientation on the mechanical properties of polymer-nanotube composite fibers: separating intrinsic reinforcement from orientational effects. Adv. Funct. Mater. 21(2), 364–371 (2011)

    Google Scholar 

  • Bretzlaff, R.S., Wool, R.P.: Frequency shifting and asymmetry in infrared bands of stressed polymers. Macromolecules 16(12), 1907–1917 (1983)

    Google Scholar 

  • Brown, S.D.M., Jorio, A., Corio, P., Dresselhaus, M.S., Dresselhaus, G., Saito, R., Kneipp, K.: Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B – Condens. Matter Mater. Phys. 63(15), 1554141–1554148 (2001)

    Google Scholar 

  • Brownlow, S.R., Moravsky, A.P., Kalugin, N.G., Majumdar, B.S.: Probing deformation of double-walled carbon nanotube (DWNT)/epoxy composites using FTIR and Raman techniques. Compos. Sci. Technol. 70(10), 1460–1468 (2010)

    Google Scholar 

  • Cançado, L.G., Pimenta, M.A., Saito, R., Jorio, A., Ladeira, L.O., Grueneis, A., Souza-Filho, A.G., Dresselhaus, G., Dresselhaus, M.S.: Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B 66(3), 035415 (2002)

    Google Scholar 

  • Cançado, L.G., Pimenta, M.A., Neves, B.R.A., Medeiros-Ribeiro, G., Enoki, T., Kobayashi, Y., Takai, K., Fukui, K.I., Dresselhaus, M.S., Saito, R., Jorio, A.: Anisotropy of the Raman spectra of nanographite ribbons. Phys. Rev. Lett. 93(4), 047403–047401 (2004)

    Google Scholar 

  • Cançado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Speziali, N.L., Jorio, A., Pimenta, M.A.: Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon 46(2), 272–275 (2008)

    Google Scholar 

  • Chae, H.G., Sreekumar, T.V., Uchida, T., Kumar, S.: A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer 46(24), 10925–10935 (2005). doi:10.1016/j.polymer.2005.08.092

    Google Scholar 

  • Chen, W., Tao, X.: Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes. Appl. Surf. Sci. 252(10), 3547–3552 (2006). doi:10.1016/j.apsusc.2005.05.028

    Google Scholar 

  • Chohan, V., Galiotis, C.: Effects of interface, volume fraction and geometry on stress redistribution in polymer composites under tension. Compos. Sci. Technol. 57(8), 1089–1101 (1997)

    Google Scholar 

  • Christofilos, D., Arvanitidis, J., Tzampazis, C., Papagelis, K., Takenobu, T., Iwasa, Y., Kataura, H., Lioutas, C., Ves, S., Kourouklis, G.A.: Raman study of metallic carbon nanotubes at elevated pressure. Diam. Relat. Mater. 15(4–8), 1075–1079 (2006). doi:10.1016/j.diamond.2005.11.027

    Google Scholar 

  • Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9), 1624–1652 (2006)

    Google Scholar 

  • Colthup, N.B.: Introduction to infrared and Raman spectroscopy. Academic, London (1975)

    Google Scholar 

  • Cooper, C.A., Young, R.J., Halsall, M.: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. Pt A: Appl. Sci. Manuf. 32(3–4), 401–411 (2001)

    Google Scholar 

  • Cooper, C.A., Cohen, S.R., Barber, A.H., Wagner, H.D.: Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81(20), 3873–3875 (2002)

    Google Scholar 

  • Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(3), 72–79 (1952)

    Google Scholar 

  • Cronin, S.B., Swan, A.K., Unlü, M.S., Goldberg, B.B., Dresselhaus, M.S., Tinkham, M.: Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys. Rev. Lett. 93(16), 167401 (2004)

    Google Scholar 

  • Cronin, S.B., Swan, A.K., Unlü, M.S., Goldberg, B.B., Dresselhaus, M.S., Tinkham, M.: Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 72(3), 035425 (2005)

    Google Scholar 

  • Cui, S., Kinloch, I.A., Young, R.J., Noé, L., Monthioux, M.: The effect of stress transfer within double-walled carbon nanotubes upon their ability to reinforce composites. Adv. Mater. 21(35), 3591–3595 (2009)

    Google Scholar 

  • de la Vega, A., Kovacs, J.Z., Bauhofer, W., Schulte, K.: Combined Raman and dielectric spectroscopy on the curing behaviour and stress build up of carbon nanotube-epoxy composites. Compos. Sci. Technol. 69(10), 1540–1546 (2009)

    Google Scholar 

  • de la Vega, A., Kinloch, I.A., Young, R.J., Bauhofer, W., Schulte, K.: Simultaneous global and local strain sensing in SWCNT-epoxy composites by Raman and impedance spectroscopy. Compos. Sci. Technol. 71(2), 160–166 (2011)

    Google Scholar 

  • Del Corro, E., Gonzalez, J., Taravillo, M., Escoffier, W., Baonza, V.G.: Graphite under non-hydrostatic conditions. High Press. Res. 28(4), 583–586 (2008)

    Google Scholar 

  • Del Corro, E., Taravillo, M., González, J., Baonza, V.G.: Raman characterization of carbon materials under non-hydrostatic conditions. Carbon 49(3), 973–979 (2011). doi:10.1016/j.carbon.2010.09.064

    Google Scholar 

  • Deng, L., Young, R.J., van der Zwaag, S., Picken, S.: Characterization of the adhesion of single-walled carbon nanotubes in poly(p-phenylene terephthalamide) composite fibres. Polymer 51(9), 2033–2039 (2010)

    Google Scholar 

  • Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 30(2), 139–326 (1981)

    Google Scholar 

  • Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)

    Google Scholar 

  • Dresselhaus, M.S., Dresselhaus, G., Jorio, A.: Raman spectroscopy of carbon nanotubes in 1997 and 2007. J. Phys. Chem. C 111(48), 17887–17893 (2007)

    Google Scholar 

  • Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R.: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3), 751–758 (2010)

    Google Scholar 

  • Dunstan, D.J., Ghandour, A.J.: High-pressure studies of carbon nanotubes. High Press. Res. 29(4), 548–553 (2009)

    Google Scholar 

  • Evans, K.E., Gibson, A.G.: Prediction of the maximum packing fraction achievable in randomly oriented short-fibre composites. Compos. Sci. Technol. 25(2), 149–162 (1986)

    Google Scholar 

  • Everall, N.J., Lumsdon, J., Christopher, D.J.: The effect of laser-induced heating upon the vibrational Raman spectra of graphites and carbon fibres. Carbon 29(2), 133–137 (1991)

    Google Scholar 

  • Frank, O., Tsoukleri, G., Parthenios, J., Papagelis, K., Riaz, I., Jalil, R., Novoselov, K.S., Galiotis, C.: Compression behavior of single-layer graphenes. ACS Nano 4(6), 3131–3138 (2010)

    Google Scholar 

  • Frank, O., Mohr, M., Maultzsch, J., Thomsen, C., Riaz, I., Jalil, R., Novoselov, K.S., Tsoukleri, G., Parthenios, J., Papagelis, K., Kavan, L., Galiotis, C.: Raman 2D-band splitting in graphene: theory and experiment. ACS Nano 5(3), 2231–2239 (2011a)

    Google Scholar 

  • Frank, O., Tsoukleri, G., Riaz, I., Papagelis, K., Parthenios, J., Ferrari, A.C., Geim, A.K., Novoselov, K.S., Galiotis, C.: Development of a universal stress sensor for graphene and carbon fibres. Nat. Commun. 2(1) (2011b). doi:10.1038/ncomms1247

  • Galiotis, C., Batchelder, D.N.: Strain dependencies of the first- and second-order Raman spectra of carbon fibres. J. Mater. Sci. Lett. 7, 545–547 (1988)

    Google Scholar 

  • Galiotis, C., Young, R.J., Batchelder, D.N.: A resonance Raman spectroscopic study of the strength of the bonding between an epoxy resin and a polydiacetylene fibre. J. Mater. Sci. Lett. 2(6), 263–266 (1983)

    Google Scholar 

  • Galiotis, C., Robinson, I.M., Young, R.J., Smith, B.J.E., Batchelder, D.N.: Strain dependence of the Raman frequencies of a Kevlar 49 fibre. Polym. Commun. Guildford 26(12), 354–355 (1985)

    Google Scholar 

  • Galiotis, C., Chohan, V., Paipetis, A., Vlattas, C.: Interfacial measurements and fracture characteristics of single and multi-fiber composites by remote laser Raman microscopy. ASTM Spec. Tech. Publ. 1290, 19–33 (1996)

    Google Scholar 

  • Gao, B., Jiang, L., Ling, X., Zhang, J., Liu, Z.: Chirality-dependent Raman frequency variation of single-walled carbon nanotubes under uniaxial strain. J. Phys. Chem. C 112(51), 20123–20125 (2008). doi:10.1021/jp809374j

    Google Scholar 

  • Gong, L., Kinloch, I.A., Young, R.J., Riaz, I., Jalil, R., Novoselov, K.S.: Interfacial stress transfer in a graphene monolayer nanocomposite. Adv. Mater. 22(24), 2694–2697 (2010)

    Google Scholar 

  • Gouadec, G., Colomban, P.: Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 53(1), 1–56 (2007)

    Google Scholar 

  • Guo, J.J., Liu, G.H., Wang, X.M., Fujita, T., Xu, B.S., Chen, M.W.: High-pressure Raman spectroscopy of carbon onions and nanocapsules. Appl. Phys. Lett. 95(5), 51920 (2009)

    Google Scholar 

  • Hadjiev, V.G., Warren, G.L., Sun, L., Davis, D.C., Lagoudas, D.C., Sue, H.J.: Raman microscopy of residual strains in carbon nanotube/epoxy composites. Carbon 48(6), 1750–1756 (2010)

    Google Scholar 

  • Hanfland, M., Beister, H., Syassen, K.: Graphite under pressure: equation of state and first-order Raman modes. Phys. Rev. B 39(17), 12598 (1989)

    Google Scholar 

  • Huang, Y., Young, R.J.: Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres. Carbon 33(2), 97–107 (1995)

    Google Scholar 

  • Jorio, A., Dresselhaus, G., Dresselhaus, M.S., Souza, M., Dantas, M.S.S., Pimenta, M.A., Rao, A.M., Saito, R., Liu, C., Cheng, H.M.: Polarized Raman study of single-wall semiconducting carbon nanotubes. Phys. Rev. Lett. 85(12), 2617–2620 (2000)

    Google Scholar 

  • Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M.S.: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86(6), 1118–1121 (2001)

    Google Scholar 

  • Jorio, A., Fantini, C., Dantas, M.S.S., Pimenta, M.A., Souza Filho, A.G., Samsonidze, G.G., Brar, V.W., Dresselhaus, G., Dresselhaus, M.S., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Saito, R.: Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys. Rev. B – Condens. Matter Mater. Phys. 66(11), 1154111–1154118 (2002)

    Google Scholar 

  • Jorio, A., Pimenta, M.A., Souza Filho, A.G., Samsonidze, G.G., Swan, A.K., Unlü, M.S., Goldberg, B.B., Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Resonance Raman spectra of carbon nanotubes by cross-polarized light. Phys. Rev. Lett. 90(10), 107403 (2003)

    Google Scholar 

  • Kao, C.C., Young, R.J.: A Raman spectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites. Compos. Sci. Technol. 64(15), 2291–2295 (2004) (Special issue)

    Google Scholar 

  • Kao, C.C., Young, R.J.: Assessment of interface damage during the deformation of carbon nanotube composites. J. Mater. Sci. 45(6), 1425–1431 (2010)

    Google Scholar 

  • Katagiri, G., Ishida, H., Ishitani, A.: Raman spectra of graphite edge planes. Carbon 26(4), 565–571 (1988)

    Google Scholar 

  • Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., Achiba, Y.: Optical properties of single-wall carbon nanotubes. Synth. Met. 103(1–3), 2555–2558 (1999)

    Google Scholar 

  • Kelly, A., Tyson, W.R.: Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J. Mech. Phys. Solid. 13(6), 329–350 (1965)

    Google Scholar 

  • Kuzmany, H., Pfeiffer, R., Hulman, M., Kramberger, C.: Raman spectroscopy of fullerenes and fullerene-nanotube composites. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 362(1824), 2375–2406 (2004)

    Google Scholar 

  • Lachman, N., Bartholome, C., Miaudet, P., Maugey, M., Poulin, P., Wagner, H.D.: Raman response of carbon nanotube/PVA fibers under strain. J. Phys. Chem. C 113(12), 4751–4754 (2009). doi:10.1021/jp900355k

    Google Scholar 

  • Lespade, P., Marchand, A., Couzi, M., Cruege, F.: Caracterisation de materiaux carbones par microspectrometrie Raman. Carbon 22(4–5), 375–385 (1984). doi:10.1016/0008-6223(84)90009-5

    Google Scholar 

  • Liu, Z., Zhang, J., Gao, B.: Raman spectroscopy of strained single-walled carbon nanotubes. Chem. Commun. 45, 6902–6918 (2009). doi:10.1039/b914588e

    Google Scholar 

  • Loa, I., Möschel, C., Reich, A., Assenmacher, W., Syassen, K., Jansen, M.: Novel graphitic spheres: Raman spectroscopy at high pressures. Phys. Status Solidi B Basic Res. 223(1), 293–298 (2001)

    Google Scholar 

  • Lucas, M., Young, R.J.: Effect of residual stresses upon the Raman radial breathing modes of nanotubes in epoxy composites. Compos. Sci. Technol. 67(5), 840–843 (2007a)

    Google Scholar 

  • Lucas, M., Young, R.J.: Unique identification of single-walled carbon nanotubes in composites. Compos. Sci. Technol. 67(10), 2135–2149 (2007b)

    Google Scholar 

  • Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., Jorio, A.: Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48(5), 1592–1597 (2010). doi:10.1016/j.carbon.2009.12.057

    Google Scholar 

  • Malard, L.M., Guimarães, M.H.D., Mafra, D.L., Mazzoni, M.S.C., Jorio, A.: Group-theory analysis of electrons and phonons in N -layer graphene systems. Phys. Rev. B 79(12), 125426 (2009a)

    Google Scholar 

  • Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009b)

    Google Scholar 

  • Marston, C., Gabbitas, B., Adams, J., Nutt, S., Marshall, P., Galiotis, C.: Failure characteristics in carbon/epoxy composite tows. Compos. Pt A: Appl. Sci. Manuf. 27(12 Pt A), 1183–1194 (1996)

    Google Scholar 

  • Melanitis, N., Galiotis, C.: Compressional behaviour of carbon fibres – Part 1 A Raman spectroscopic study. J. Mater. Sci. 25(12), 5081–5090 (1990)

    Google Scholar 

  • Melanitis, N., Tetlow, P.L., Galiotis, C., Smith, S.B.: Compressional behaviour of carbon fibres - Part II Modulus softening. J. Mater. Sci. 29(3), 786–799 (1994)

    Google Scholar 

  • Melanitis, N., Tetlow, P.L., Galiotis, C.: Characterization of PAN-based carbon fibres with Laser Raman Spectroscopy. Part I Effect of processing variables on Raman band profiles. J. Mater. Sci. 31(4), 851–860 (1996)

    Google Scholar 

  • Milnera, M., Kürti, J., Hulman, M., Kuzmany, H.: Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys. Rev. Lett. 84(6), 1324–1327 (2000)

    Google Scholar 

  • Nemanich, R.J., Lucovsky, G., Solin, S.A.: Infrared active optical vibrations of graphite. Solid State Commun. 23(2), 117–120 (1977)

    Google Scholar 

  • Paipetis, A., Galiotis, C.: Effect of fibre sizing on the stress transfer efficiency in carbon/epoxy model composites. Compos. Pt A: Appl. Sci. Manuf. 27(9), 755–767 (1996). doi:10.1016/1359-835x(96)00054-1

    Google Scholar 

  • Paipetis, A., Galiotis, C.: A study of the stress-transfer characteristics in model composites as a function of material processing, fibre sizing and temperature of the environment. Compos. Sci. Technol. 57(8), 827–838 (1997)

    Google Scholar 

  • Paipetis, A., Galiotis, C.: Modelling the stress-transfer efficiency of carbon-epoxy interfaces. Proc. R. Soc. A: Math. Phys. Eng. Sci. 457(2011), 1555–1577 (2001)

    Google Scholar 

  • Paipetis, A., Galiotis, C., Liu, Y.C., Nairn, J.A.: Stress transfer from the matrix to the fibre in a fragmentation test: Raman experiments and analytical modeling. J. Compos. Mater. 33(4), 377–399 (1999)

    Google Scholar 

  • Papagelis, K., Andrikopoulos, K.S., Arvanitidis, J., Christofilos, D., Galiotis, C., Takenobu, T., Iwasa, Y., Kataura, H., Ves, S., Kourouklis, G.A.: High pressure Raman study of the second-order vibrational modes of single- and double-walled carbon nanotubes. Phys. Status Solidi B Basic Res. 244(11), 4069–4073 (2007)

    Google Scholar 

  • Papagelis, K., Arvanitidis, J., Christofilos, D., Souliou, S.M., Galiotis, C., Ves, S., Kourouklis, G.A.: High-pressure Raman study of stacked-cup carbon nanofibers. High Press. Res. 31(1), 131–135 (2011)

    Google Scholar 

  • Peng, B., Locascio, M., Zapol, P., Li, S.Y., Mielke, S.L., Schatz, G.C., Espinosa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3(10), 626–631 (2008). doi:10.1038/nnano.2008.211

    Google Scholar 

  • Pfeiffer, R., Kuzmany, H., Kramberger, C., Schaman, C., Pichler, T., Kataura, H., Achiba, Y., Kürti, J., Zólyomi, V., lyomi, V.: Unusual high degree of unperturbed environment in the interior of single-wall carbon nanotubes. Phys. Rev. Lett. 90(22), 225501 (2003)

    Google Scholar 

  • Pimenta, M.A., Marucci, A., Empedocles, S.A., Bawendi, M.G., Hanlon, E.B., Rao, A.M., Eklund, P.C., Smalley, R.E., Dresselhaus, G., Dresselhaus, M.S.: Raman modes of metallic carbon nanotubes. Phys. Rev. B – Condens. Matter Mater. Phys. 58(24), R16016–R16019 (1998)

    Google Scholar 

  • Pitkethly, M.J., Doble, J.B.: Characterizing the fibre/matrix interface of carbon fibre-reinforced composites using a single fibre pull-out test. Composites 21(5), 389–395 (1990). doi:10.1016/0010-4361(90)90436-z

    Google Scholar 

  • Proctor, J.E., Gregoryanz, E., Novoselov, K.S., Lotya, M., Coleman, J.N., Halsall, M.P.: High-pressure Raman spectroscopy of graphene. Phys. Rev. B – Condens. Matter Mater. Phys. 80(7) (2009)

    Google Scholar 

  • Puech, P., Nanot, S., Raquet, B., Broto, J.M., Millot, M., Anwar, A.W., Flahaut, E., Bacsa, W.: Comparative Raman spectroscopy of individual and bundled double wall carbon nanotubes. Phys. Status Solidi B Basic Res. 248(4), 974–979 (2011)

    Google Scholar 

  • Robinson, I.M., Zakikhani, M., Day, R.J., Young, R.J., Galiotis, C.: Strain dependence of the Raman frequencies for different types of carbon fibres. J. Mater. Sci. Lett. 6(10), 1212–1214 (1987)

    Google Scholar 

  • Sandler, J., Shaffer, M.S.P., Windle, A.H., Halsall, M.P., Montes-Morán, M.A., Cooper, C.A., Young, R.J.: Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: A simple geometric effect. Physical Review B - Condensed Matter and Materials Physics. 67(3), 354171–354178 (2003)

    Google Scholar 

  • Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998). doi:10.1063/1.122911

    Google Scholar 

  • Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., Bhowmick, A.K.: A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. (Oxford) 36(5), 638–670 (2011)

    Google Scholar 

  • Souza Filho, A.G., Jorio, A., Samsonidze, G.G., Dresselhaus, G., Dresselhaus, M.S., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Saito, R., Hafner, J.H., Lieber, C.M., Pimenta, M.A.: Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra. Chem. Phys. Lett. 354(1–2), 62–68 (2002)

    Google Scholar 

  • Srivastava, I., Mehta, R.J., Yu, Z.Z., Schadler, L., Koratkar, N.: Raman study of interfacial load transfer in graphene nanocomposites. Appl. Phys. Lett. 98(6) (2011). doi:10.1063/1.3552685

  • Sureeyatanapas, P., Hejda, M., Eichhorn, S.J., Young, R.J.: Comparing single-walled carbon nanotubes and samarium oxide as strain sensors for model glass-fibre/epoxy composites. Compos. Sci. Technol. 70(1), 88–93 (2010)

    Google Scholar 

  • Tashiro, K., Wu, G., Kobayashi, M.: Quasiharmonic treatment of infrared and Raman vibrational frequency shifts induced by tensile deformation of polymer chains. J. Polymer Sci., Part B: Polymer Phys. 28(13), 2527–2553 (1990)

    Google Scholar 

  • Teredesai, P.V., Sood, A.K., Muthu, D.V.S., Sen, R., Govindaraj, A., Rao, C.N.R.: Pressure-induced reversible transformation in single-wall carbon nanotube bundles studied by Raman spectroscopy. Chem. Phys. Lett. 319(3–4), 296–302 (2000)

    Google Scholar 

  • Tuinstra, F., Koenig, J.L.: Characterization of graphite fiber surfaces with Raman spectroscopy. J. Compos. Mater. 4, 494–499 (1970)

    Google Scholar 

  • Van Den Heuvel, P.W.J., Peijs, T., Young, R.J.: Failure phenomena in two-dimensional multi-fibre microcomposites: 2. A Raman spectroscopic study of the influence of inter-fibre spacing on stress concentrations. Compos. Sci. Technol. 57(8), 899–911 (1997)

    Google Scholar 

  • Venkateswaran, U.D., Brandsen, E.A., Schlecht, U., Rao, A.M., Richter, E., Loa, I., Syassen, K., Eklund, P.C.: High pressure studies of the Raman-active phonons in carbon nanotubes. Phys. Status Solidi B 223(1), 225–236 (2001). doi:10.1002/1521-3951(200101)223:1<225::aid-pssb225>3.0.co;2-6

    Google Scholar 

  • Vidano, R.P., Fischbach, D.B., Willis, L.J., Loehr, T.M.: Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 39(2), 341–344 (1981)

    Google Scholar 

  • Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., Poulin, P.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)

    Google Scholar 

  • Wool, R.P.: Infrared studies of deformation in semicrystalline polymers. Polym. Eng. Sci. 20(12), 805–815 (1980)

    Google Scholar 

  • Yallee, R.B., Young, R.J.: Evaluation of interface fracture energy for single-fibre composites. Compos. Sci. Technol. 58(12), 1907–1916 (1998)

    Google Scholar 

  • Zhao, Q., Wagner, H.D.: Two-dimensional strain mapping in model fiber-polymer composites using nanotube Raman sensing. Compos. Pt A: Appl. Sci. Manuf. 34(12), 1219–1225 (2003)

    Google Scholar 

  • Zhao, Q., Frogley, M.D., Wagner, H.D.: Direction-sensitive strain-mapping with carbon nanotube sensors. Compos. Sci. Technol. 62(1), 147–150 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Paipetis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paipetis, A.S. (2013). Stress Induced Changes in the Raman Spectrum of Carbon Nanostructures and Their Composites. In: Paipetis, A., Kostopoulos, V. (eds) Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4246-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4246-8_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4245-1

  • Online ISBN: 978-94-007-4246-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics