Skip to main content

Carbon Nanotube Structures with Sensing and Actuating Capabilities

  • Chapter
  • First Online:
Carbon Nanotube Enhanced Aerospace Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 188))

Abstract

We describe carbon nanotube (CNT) structures which are used as mechanical sensors, electromechanical actuators and shape memory materials. These structures include CNT mats and fibres of aligned CNTs. Mechanical sensors are based on the piezo-resistivity of the investigated CNT structures. They can be used as embedded sensors for sensing and damage monitoring of composites. CNT can also be used for novel actuator technologies. Indeed CNTs deform in response to charge injection and electrostatic phenomena. They can be stimulated under the form of electrodes in a given electrolyte. CNT structures can generate a large stress because of their stiffness. In other classes of actuating materials, carbon nanotubes can be used as fillers of shape memory polymers (SMPs). SMPs have applications in packaging, biomedical devices, heat shrink tubing, deployable structures, etc. CNTs are ideal materials to improve the stiffness of shape memory polymers, which is critical for achieving large stress recovery. Their electrical conductivity is of particular interest in the engineering of SMPs which can be heated via Joule’s heating and directly stimulated by an electrical current. We review in this chapter the properties of these new functional materials and highlight their potential for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggelis, D.G., Barkoula, N.M., Matikas, T.E., Paipetis, A.S.: Acoustic emission monitoring of degradation of cross ply laminates. J. Acoust. Soc. Am. 127(6), 246–251 (2010)

    Article  Google Scholar 

  • Alexopoulos, N.D., Bartholome, C., Poulin, P., Marioli-Riga, Z.: Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Compos. Sci. Technol. 70, 260–271 (2010a)

    Article  Google Scholar 

  • Alexopoulos, N.D., Bartholome, C., Poulin, P., Marioli-Riga, Z.: Damage detection of glass fiber reinforced composites using embedded PVA-carbon nanotube (CNT) fibers. Compos. Sci. Technol. 70, 1733–1741 (2010b)

    Article  Google Scholar 

  • Arby, J.C., Bochard, S., Chateauminois, A., Salvia, M., Giraud, G.: In situ detection of damage in CFRP laminates by electrical resistance measurements. Compos. Sci. Technol. 59, 925–935 (1999)

    Article  Google Scholar 

  • Arby, J.C., Choi, Y.K., Chateauminois, A., Dalloz, B., Giraud, G.: In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements. Compos. Sci. Technol. 61, 855–864 (2001)

    Article  Google Scholar 

  • Asaka, A., Oguro, K., Nishimura, N., Misuhata, M., Takenaka, H.: Bending of polyelectrolyte membrane – platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym. J. 27(4), 436–440 (1995)

    Article  Google Scholar 

  • Badaire, S., Poulin, P., Maugey, M., Zakri, C.: In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. Langmuir 20(24), 10367–10370 (2004a)

    Article  Google Scholar 

  • Badaire, S., Pichot, V., Zakri, C., Poulin, P., Launois, P., Vavro, J., Guthy, C., Chen, M., Fischer, J.E.: Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes. J. Appl. Phys. 96(12), 7509–7513 (2004b)

    Article  Google Scholar 

  • Balageas, D., Fritzen, C., Guemes, A. (eds.): Structural Health Monitoring. ISTE, London/Newport Beach (2006)

    Google Scholar 

  • Bard, A.J., Faulkner, L.R.: Electrochemical Methods. Fundamentals and Applications. Wiley, New York (2001)

    Google Scholar 

  • Barisci, J.N., Spinks, G.M., Wallace, G.G., Madden, J.D., Baughman, R.H.: Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Mater. Struct. 12(4), 549–555 (2003)

    Article  Google Scholar 

  • Bartholome, C., Derre, A., Roubeau, O., Zakri, C., Poulin, P.: Electromechanical properties of nanotube-PVA composite actuator bimorphs. Nanotechnology 19((32) (2008)

    Google Scholar 

  • Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999)

    Article  Google Scholar 

  • Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes – the route toward applications. Science 297(5582), 787–792 (2002)

    Article  Google Scholar 

  • Berriot, J., Montes, H., Lequeux, F., Long, D., Sotta, P.: Gradient of glass transition temperature in filled elastomers. Europhys. Lett. 64(1), 50–56 (2003)

    Article  Google Scholar 

  • Bhattacharyya, S., Salvetat, J.P., Saboungi, M.L.: Reinforcement of semicrystalline polymers with Collagen-modified single-walled carbon nanotubes. Appl. Phys. Lett. 88, 2331191–2331193 (2006)

    Google Scholar 

  • Bin, Y., Mine, M., Koganemaru, A., Jiang, X., Matsuo, M.: Morphology and mechanical and electrical properties of oriented PVA-VGCF and PVA-MWNT composites. Polymer 47(4), 1308–1317 (2006)

    Article  Google Scholar 

  • Boller, C., Chang, F.-K., Fujino, Y.: Encyclopaedia of Structural Health Monitoring. Wiley, New York (2009)

    Book  Google Scholar 

  • Cadek, M., Coleman, J.N., Barron, V., Hedicke, K., Blau, W.: Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. J. Appl. Phys. Lett. 81(27), 5123–5125 (2002)

    Article  Google Scholar 

  • Cadek, M., Coleman, J.N., Ryan, K.P., Nicolosi, V., Bister, G., Fonseca, A., Nagy, J.B., Szostak, K., Beguin, F., Blau, W.J.: Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett. 4(2), 353–356 (2004)

    Article  Google Scholar 

  • Chen, W., Tao, X., Xue, P., Cheng, X.: Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)–carbon nanotube composite films. Appl. Surf. Sci. 252(5), 1404–1409 (2005)

    Article  Google Scholar 

  • Chung, T., Rorno-Uribe, A., Mather, P.T.: Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1), 184–192 (2008)

    Article  Google Scholar 

  • Coleman, J.N., Cadek, M., Blake, R., Nicolosi, V., Ryan, K.P., Belton, C., Fonseca, A., Nagy, J.B., Gun’ko, Y.K., Blau, W.J.: High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 14(8), 791–798 (2004)

    Article  Google Scholar 

  • Coleman, J.N., Cadek, M., Ryan, K.P., Fonseca, A., Nagy, J.B., Blau, W.J., Ferreira, M.S.: Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling. Polymer 47(26), 8556–8561 (2006)

    Article  Google Scholar 

  • Dalton, A.B.., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G., Baughman, R.H.: Super-tough carbon-nanotube fibres – these extraordinary composite fibres can be woven into electronic textiles. Nature 423(6941), 703–703 (2003)

    Article  Google Scholar 

  • De Gennes, P.G., Okumura, K., Shahinpoor, M., Kim, K.J.: Mechanoelectric effects in ionic gels. Europhys. Lett 50, 513–518 (2000)

    Article  Google Scholar 

  • Fraysse, J., Minett, A.I., Jaschinski, O., Duesberg, G.S., Roth, S.: Carbon nanotubes acting like actuators. Carbon 40(10), 1735–1739 (2002)

    Article  Google Scholar 

  • Fukushima, T., Azaka, K., Kosaka, A., Aida, T.: Fully plastic actuator through layer-by layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 44, 2410–2413 (2005)

    Article  Google Scholar 

  • Gagel, A., Lange, D., Schulte, K.: On the relation between crack densities, stiffness degradation, and surface temperature distribution of tensile fatigue loaded glass-fibre non-crimp-fabric reinforced epoxy. Composites Part A 37, 222–228 (2006)

    Article  Google Scholar 

  • Gall, K., Dunn, M.L., Liu, Y.P., Finch, D., Lake, M., Munshi, N.A.: Shape memory polymer nanocomposites. Acta Mater. 50(20), 5115–5126 (2002)

    Article  Google Scholar 

  • Gall, K., Dunn, M.L., Liu, Y.P., Stefanic, G., Balzar, D.: Internal stress storage in shape memory polymer nanocomposites. Appl. Phys. Lett. 85(2), 290–292 (2004)

    Article  Google Scholar 

  • Gall, K., Yakacki, C.M., Liu, Y.P., Shandas, R., Willett, N., Anseth, K.S.: Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res. A 73A(3), 339–348 (2005)

    Article  Google Scholar 

  • Ghosh, S., Gadagkar, V., Sood, A.K.: Strains induced in carbon nanotubes due to the presence of ions: Ab initio restricted Hatree-Fock calculations. Chem. Phys. Lett. 406(1–3), 10–14 (2005)

    Article  Google Scholar 

  • Giurgiutiu, V.: Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Elsevier, Oxford (2008)

    Google Scholar 

  • Gunes, I.S., Jana, S.C.: Shape memory polymers and their nanocomposites: a review of science and technology of new multifunctional materials. J. Nanosci. Nanotechnol. 8(4), 1616–1637 (2008)

    Article  Google Scholar 

  • Gupta, V.B., Radhakrishnan, J., Sett, S.K.: Effect of processing history on shrinkage stress in axially oriented poly(ethylene-terephtathalate) fibres and films. Polymer 35(12), 2560–2567 (1994)

    Article  Google Scholar 

  • Gupta, S., Hughes, M., Windle, A.H., Robertson, J.: Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy. J. Appl. Phys. 95(4), 2038–2048 (2004)

    Article  Google Scholar 

  • Highsmith, A.L., Reifsnider, K.L.: Damage in composite materials. ASTM STP 775, 103–117 (1982)

    Google Scholar 

  • Hu, J.L., Yang, Z.H., Yeung, L.Y., Ji, F.L., Liu, Y.Q.: Crosslinked polyurethanes with shape memory properties. Polym. Int. 54(5), 854–859 (2005)

    Article  Google Scholar 

  • Hughes, M., Spinks, G.M.: Multiwalled carbon-nanotube actuators. Adv. Mater. 17(4), 443 (2005)

    Article  Google Scholar 

  • Irving, P.E., Thiagarajan, C.: Fatigue damage characterization in carbon fibre composite materials using an electrical potential technique. Smart Mater. Struct. 7(4), 456–466 (1998)

    Article  Google Scholar 

  • Kaddour, A.S., Al-Salehi, F.A.R., Al-Hassani, S.T.S., Hinton, M.J.: Electrical resistance measurement technique for detecting failure in CFRP materials at high strain rates. Compos. Sci. Technol. 51(3), 377–385 (1994)

    Article  Google Scholar 

  • Kim, K.J., Shahinpoor, M.: A novel method of manufacturing three dimensional Ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles. Polymer 43, 797–802 (2002)

    Article  Google Scholar 

  • Kim, K.J., Shahinpoor, M.: Ionic polymer–metal composites: II. Manufacturing techniques. Smart Mater. Struct. 12, 65–79 (2003)

    Article  Google Scholar 

  • Kim, B.K., Lee, S.Y., Xu, M.: Polyurethanes having shape memory effects. Polymer 37(26), 5781–5793 (1996)

    Article  Google Scholar 

  • Koerner, H., Price, G., Pearce, N.A., Alexander, M., Vaia, R.A.: Remotely actuated polymer nanocomposites – stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3(2), 115–120 (2004)

    Article  Google Scholar 

  • Kornbluh, R. Pelrine, R., Pei Q., Heydt R., Stanford S., Oh S., Eckerle J.: In: Proceedings of SPIE, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, San-Diego (CA) USA, p. 4698 (2002)

    Google Scholar 

  • Kupke, M., Schulte, K., Schuler, R.: Non-destructive testing of FRP by d.c. and a.c. electrical methods. Compos. Sci. Technol. 61, 837–847 (2001)

    Google Scholar 

  • Lendlein, A., Kelch, S.: Shape-memory polymers. Angew. Chem. Int. Ed. 41(12), 2034–2057 (2002)

    Article  Google Scholar 

  • Lendlein, A., Langer, R.: Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676 (2002)

    Article  Google Scholar 

  • Li, C., Thostenson, E.T., Chou, T.W.: Sensors and actuators based on carbon nanotubes and their composites: a review. Compos. Sci. Technol. 68(6), 1227–1249 (2008)

    Article  Google Scholar 

  • Lin, Y., Zhou, B., Fernando, K.A., Liu, P., Allard, L.F., Sun, Y.: Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36(19), 7199–7204 (2003)

    Article  Google Scholar 

  • Liu, Y., Gall, K., Dunn, M.L., McCluskey, P.: Thermomechanics of shape memory polymer nanocomposites. Mech. Mater. 36, 929–940 (2004)

    Article  Google Scholar 

  • Liu, L., Barber, A.H., Nuriel, S., Wagner, H.D.: Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites. Adv. Funct. Mater. 15, 975–980 (2005)

    Article  Google Scholar 

  • Liu, C., Qin, H., Mather, P.T.: Review of progress in shape-memory polymers. J. Mater. Chem. 17(16), 1543–1558 (2007)

    Article  Google Scholar 

  • Loutas, T.H., Kostopoulos, V.: Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: Acoustic emission monitoring and damage mechanisms evolution. Compos. Sci. Technol. 69(2), 265–272 (2009)

    Google Scholar 

  • Luo, X.F., Mather, P.T.: Preparation and characterization of shape memory elastomeric composites. Macromolecules 42(19), 7251–7253 (2009)

    Article  Google Scholar 

  • Madden, J.D.W., Barisci, J.N., Anquetil, P.A., Spinks, G.M., Wallace, G.G., Baughman, R.H., Hunter, I.W.: Fast carbon nanotube charging and actuation. Adv. Mater. 18(7), 870 (2006)

    Article  Google Scholar 

  • Mazzoldi, A., Tesconi, M., Tognetti, A., Rocchia, W., Vozzi, G., Pioggia, G., Ahluwalia, A., De Rossi, D.: Carbon nanotube actuators: soft-lithographic fabrication and electro-chemical modelling. Mater. Sci. Eng. C 28(7), 1057–1064 (2008)

    Article  Google Scholar 

  • Meng, Q.H., Hu, J.L., Zhu, Y.: Shape-memory polyurethane/multiwalled carbon nanotube fibres. J. Appl. Polymer Sci. 106(2), 837–848 (2007)

    Article  Google Scholar 

  • Miaudet, P., Badaire, S., Maugey, M., Derre, A., Pichot, V., Launois, P., Poulin, P., Zakri, C.: Hot-drawing of single and multiwall carbon nanotube fibres for high toughness and alignment. Nano Lett. 5(11), 2212–2215 (2005)

    Article  Google Scholar 

  • Miaudet, P., Derre, A., Maugey, M., Zakri, C., Piccione, P.M., Inoubli, R., Poulin, P.: Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854), 1294–1296 (2007)

    Article  Google Scholar 

  • Minus, M.L., Chae, H.G., Kumar, S.: Crystallization of poly(vinyl alcohol). Polymer 47(11), 3705–3710 (2006)

    Article  Google Scholar 

  • Miyamoto, Y., Fukao, K., Yamao, H., Sekimoto, K.: Memory effect on the glass transition in vulcanized rubber. Phys. Rev. Lett. 88(22) (2002)

    Google Scholar 

  • Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., Lendlein, A.: Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. USA 103(10), 3540–3545 (2006)

    Article  Google Scholar 

  • Morshedian, J., Khonakdar, H.A., Mehrabzadeh, M., Eslami, H.: Preparation and properties of heat-shrinkable cross-linked low-density polyethylene. Adv. Polym. Technol. 22(2), 112–119 (2003)

    Article  Google Scholar 

  • Mukai, K., Asaka, K., Kiyohara, K., Sugino, T., Takeuchi, I., Fukushima, T., Aida, T.: High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim. Acta 53, 5555–5562 (2008)

    Article  Google Scholar 

  • Muto, N., Arai, Y., Shin, S.G., Matsubara, H., Yanagida, H., Sugita, M., et al.: Hybrid composites with self-diagnosing function for preventing fatal fracture. Compos. Sci. Technol. 61, 875–883 (2001)

    Article  Google Scholar 

  • Neimark, A.V., Ruetsch, S., Kornev, K.G., Ravikovitch, P.I.: Hierarchical pore structure and wetting properties of single-wall carbon nanotube fibres. Nano Lett. 3(3), 419–423 (2003)

    Article  Google Scholar 

  • Nemat-Nasser, S.: Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys. 92, 2899–2915 (2002)

    Article  Google Scholar 

  • Ohki, T., Ni, Q.Q., Ohsako, N., Iwamoto, M.: Mechanical and shape memory behavior of composites with shape memory polymer. Compos. Part A-Appl. Sci. Manuf. 35(9), 1065–1073 (2004)

    Article  Google Scholar 

  • Pantelakis, S.G., Kyriakakis, E.C.H., Papanikos, P.: Non-destructive fatigue damage characterization of laminated thermosetting fibrous composites. Fatigue Fract. Eng. Mater. Struct. 24(10), 651–662 (2001)

    Article  Google Scholar 

  • Paquette, J.W., Kim, K.J., Nam, J., Tak, Y.S.: An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a clay-based polymer nano-composite technique. J. Intell. Mater. Syst. Struct. 14, 633–642 (2003)

    Article  Google Scholar 

  • Park, J.S., Park, J.W., Ruckenstein, E.: On the viscoelastic properties of poly(vinyl alcohol) and chemically crosslinked poly(vinyl alcohol). J. Appl. Polymer Sci. 82(7), 1816–1823 (2001)

    Article  Google Scholar 

  • Parvizi, A., Bailey, J.E.: On multiple transverse cracking in glass fibre epoxy cross-ply laminates. J. Mater. Sci. 13, 2131–2136 (1978)

    Article  Google Scholar 

  • Philippidis, T.P., Assimakopoulou, T.T.: Strength degradation due to fatigue-induced matrix cracking in FRP composites: an acoustic emission predictive model. Compos. Sci. Technol. 68(15–16), 3272–3277 (2008)

    Article  Google Scholar 

  • Qin, H.H., Mather, P.T.: Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42(1), 273–280 (2009)

    Article  Google Scholar 

  • Raguse, B., Müller, K.-H., Wieczorek, L.: Nanoparticles actuators. Adv. Mater. 15(11), 922–926 (2003)

    Article  Google Scholar 

  • Riemenschneider, J., Opitz, S., Sinapius, M., Monner, H.P.: Modeling of carbon nanotube actuators: Part I – Modeling and electrical properties. J. Intell. Mater. Syst. Struct. 20(2), 245–250 (2009a)

    Article  Google Scholar 

  • Riemenschneider, J., Opitz, S., Sinapius, M., Monner, H.P.: Modeling of carbon nanotube actuators: Part II – Mechanical properties, electro mechanical coupling and validation of the model. J. Intell. Mater. Syst. Struct. 20(3), 253–263 (2009b)

    Article  Google Scholar 

  • Ryan, K.P., et al.: Carbon nanotubes for reinforcement of plastics. A case study with poly(vinyl alcohol). Compos. Sci. Technol. 67(7–8), 1640–1649 (2007)

    Article  Google Scholar 

  • Schulte, K., Baron, C.: Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Compos. Sci. Technol. 36(1), 63–76 (1989)

    Article  Google Scholar 

  • Seo, D.C., Lee, J.J.: Damage detection of CFRP laminates using electrical resistance measurement and neural network. Compos. Struct. 47, 525–530 (1999)

    Article  Google Scholar 

  • Shaffer, M., Windle, A.H.: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11(11), 937–941 (1999)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: The effect of surface-electrode resistance on the performance of ionic polymer–metal composite (IPMC) artificial muscles. Smart Mater. Struct. 9, 543–551 (2000)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: Ionic polymer–metal composites: I. Fundamentals. Smart Mater. Struct. 10, 819–833 (2001)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13, 1362–1388 (2004)

    Article  Google Scholar 

  • Stoney, G.G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A82, 172 (1909)

    Google Scholar 

  • Sun, G.Y., Kurti, J., Kertesz, M., Baughman, R.H.: Dimensional changes as a function of charge injection in single-walled carbon nanotubes. J. Am. Chem. Soc. 124(50), 15076–15080 (2002)

    Article  Google Scholar 

  • Tadokoro, S., Takamori, T., Oguro, K.: Modeling IPMC for design of actuation mechanisms. In: Bar-Cohen, Y. (ed.) Electroactive Polymer (EAP). SPIE Press, Washington, DC (2001)

    Google Scholar 

  • Takeuchi, I., Asaka, K., Kiyohara, K., Sugino, T., Terasawa, N., Mukai, K., Fukushima, T., Aida, T.: Electromechanical behavior of fully plastic actuators based on bucky gel containing various internal ionic liquids. Electrochim. Acta 54, 1762–1768 (2009)

    Article  Google Scholar 

  • Todoroki, A., Tanaka, M.: Delamination identification of cross-ply graphite/epoxy composite beams using electric resistance change method. Compos. Sci. Technol. 62, 629–639 (2002)

    Article  Google Scholar 

  • Todoroki, A., Kobayashi, H., Matuura, K.: Application of electric potential method to smart composite structures for detecting delamination. JSME Int. J. 38(4), 524–530 (1995)

    Google Scholar 

  • Todoroki, A., Tanaka, M., Shimamura, Y., Kobayashi, H.: Effects with a matrix crack on monitoring by electrical resistance method. Adv. Compos. Mater. 13(2), 107–120 (2004)

    Article  Google Scholar 

  • Todoroki, A., Omagari, K., Shimamura, Y., Kobayashi, H.: Matrix crack detection of CFRP using electrical resistance change with integrated surface probes. Compos. Sci. Technol. 66, 1539–1545 (2006)

    Article  Google Scholar 

  • Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., Poulin, P.: Macroscopic fibres and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)

    Article  Google Scholar 

  • Vigolo, B., Poulin, P., Lucas, M., Launois, P., Bernier, P.: Improved structure and properties of single-wall carbon nanotube spun fibres. Appl. Phys. Lett. 81(7), 1210–1212 (2002)

    Article  Google Scholar 

  • Viry, L., Mercader, C., Miaudet, P., Zakri, C., Derre, A., Kuhn, A., Maugey, M., Poulin, P.: Nanotube fibres for electromechanical and shape memory actuators. J. Mater. Chem. 20(17), 3487–3495 (2010)

    Article  Google Scholar 

  • Wang, X., Park, S.Y., Yoon, K.H., Lyoo, W.S., Min, B.G.: The effect of multi-walled carbon nanotubes on the molecular orientation of poly(vinyl alcohol) in drawn composite films. Fibres Polym. 7(4), 323–327 (2006)

    Article  Google Scholar 

  • Yun, Y., Shanov, V., Tu, Y., Schulz, M.J., Yarmolenko, S., Neralla, S., Sankar, J., Subramaniam, S.: A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett. 6(4), 689–693 (2006)

    Article  Google Scholar 

  • Zhang, X., Liu, T., Sreekumar, T.V., Kumar, S., Moore, V.C., Hauge, R.H., Smalley, R.E.: Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 3(9), 1285–1288 (2003)

    Article  Google Scholar 

  • Zhang, X., Liu, T., Sreekumar, T.V., Kumar, S., Hu, X., Smith, K.: Gel spinning of PVA/SWNT composite fibre. Polymer 45(26), 8801–8807 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Poulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jaillet, C., Alexopoulos, N.D., Poulin, P. (2013). Carbon Nanotube Structures with Sensing and Actuating Capabilities. In: Paipetis, A., Kostopoulos, V. (eds) Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4246-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4246-8_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4245-1

  • Online ISBN: 978-94-007-4246-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics