Lake Kivu pp 107-126 | Cite as

Zooplankton of Lake Kivu

Part of the Aquatic Ecology Series book series (AQEC, volume 5)


The dominant species of the crustacean plankton in Lake Kivu are the cyclopoid copepods Thermocyclops consimilis and Mesocyclops aequatorialis and the cladoceran Diaphanosoma excisum. Mean crustacean biomass over the period 2003–2004 was 0.99 g C m−2. The seasonal dynamics closely followed variations of chlorophyll a concentration and responded well to the dry season phytoplankton peak. The mean annual crustacean production rate was 23 g C m−2 year−1. The mean trophic transfer efficiency between phytoplankton and herbivorous zooplankton was equal to 6.8%, indicating a coupling between both trophic levels similar to that in other East African Great lakes. These observations suggest a predominant bottom-up control of plankton dynamics and biomass in Lake Kivu. Whereas the present biomass of crustacean plankton in Lake Kivu is comparable to that of other African Rift lakes, the zooplankton biomass before Limnothrissa introduction was 2.6 g C m−2, based on estimation from available historical data. So, if the sardine introduction in the middle of the last century led to a threefold decrease of zooplankton biomass, it did not affect zooplankton production to a level which would lead to the collapse of the food web and of the fishery.


Zooplankton Biomass Pelagic Zone Diel Vertical Migration Copepod Species Nile Perch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alekseev VR (2002) Copepoda. In: Fernando CH (ed) Tropical freshwater zooplankton: identification, ecology and impact on fisheries. Backhuys Publishers, Leiden, The NetherlandsGoogle Scholar
  2. Amarasinghe PB, Ariyaratne MG, Chitapalapong T, Vijverberg J (2008) Production, biomass and productivity of copepods and cladocerans in south-east Asian water bodies and the carrying capacity for zooplanktivorous fish. In: Schiemer F, Simon D, Amarasinghe US, Moreau J (eds) Aquatic ecosystems and development: comparative Asian perspectives. Margraf and Backhuys Publishers, Germany, The NetherlandsGoogle Scholar
  3. Brehm V (1939) Cladocera. In: Exploration du Parc National Albert, Mission H. Damas (1935–1936), fascicule 7. Institut Royal des Sciences Naturelles de Belgique, Bruxelles, BelgiumGoogle Scholar
  4. Damas H (1937) Quelques caractères écologiques de trois lacs équatoriaux: Kivu, Edouard, Ndalaga. Ann Soc R Zool Belg 68:121–135Google Scholar
  5. Dumont HJ (1986) The Tanganyika sardine in Lake Kivu: another ecodisaster for Africa? Environ Conserv 13:143–148. doi:10.1017/S0376892900036742CrossRefGoogle Scholar
  6. Dumont HJ, Van de Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of cladocera, copepoda and rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19:75–97. doi:10.1007/BF00377592CrossRefGoogle Scholar
  7. Dussart B (1967a) Les copépodes des eaux continentales d’Europe occidentale. I. Calanoïdes et Harpacticoïdes. Boubée and Cie, ParisGoogle Scholar
  8. Dussart B (1967b) Les copépodes des eaux continentales d’Europe occidentale. II. Cyclopoïdes et Biologie. Boubée and Cie, ParisGoogle Scholar
  9. Dussart B (1982) Crustacés Copépodes des eaux intérieures. In: Faune de Madagascar. ORSTOM-CNRS, ParisGoogle Scholar
  10. Fourniret Y (1992) Etude du zooplancton du Lac Kivu et relations avec son prédateur: Limnothrissa miodon. Echantillonnage de mai-juin 1990, Unité d’Ecologie des Eaux Douces. University of Namur, BelgiumGoogle Scholar
  11. Frost BW, Bollens SM (1992) Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Can J Fish Aquat Sci 49:1137–1141. doi:10.1139/f92-126CrossRefGoogle Scholar
  12. Gliwicz ZM (1985) Predation or food limitation: an ultimate reason for extinction of planktonic cladoceran species. Arch Hydrobiol Beih Ergeb Limnol 21:419–430Google Scholar
  13. Gliwicz ZM, Pijanowska J (1988) Effect of predation and resource depth distribution on vertical migration of zooplankton. Bull Mar Sci 43:695–709Google Scholar
  14. Guildford SJ, Hecky RE, Taylor WD, Mugidde R, Bootsma HA (2003) Nutrient enrichment experiments in tropical great Lakes Malawi/Nyasa and Victoria. J Great Lakes Res 29(suppl 2):89–106. doi:10.1016/S0380-1330(03)70541-3CrossRefGoogle Scholar
  15. Hołyńska M, Reid JW, Ueda H (2003) Genus Mesocyclops Sars, 1914. In: Ueda H, Reid JW (eds) Copepoda: Cyclopoida: Genera Mesocyclops and Thermocyclops. Backhuys Publishers, Leiden, The NetherlandsGoogle Scholar
  16. Irvine K (1995) Standing biomasses, production and spatio-temporal distributions of the crustacean zooplankton. In: Menz A (ed) The fishery potential and productivity of the pelagic zone of Lake Malawi/Niassa. Natural Resources Institute, Chatham, KentGoogle Scholar
  17. Irvine K, Waya R (1999) Spatial and temporal patterns of zooplankton standing biomass and production in Lake Malawi. Hydrobiologia 407:191–205. doi:10.1023/A:1003711306243CrossRefGoogle Scholar
  18. Irvine K, Patterson G, Allison EH, Thompson AB, Menz A (2000) The pelagic ecosystem of Lake Malawi: trophic structure and current threats. In: Munawar M, Hecky RE (eds) Great Lakes of the World (GLOW): food-web, health and integrity, Ecovision World Monograph Series. Backhuys, Leiden, the NetherlandsGoogle Scholar
  19. Isumbisho M (2006) Zooplankton ecology of Lake Kivu. PhD thesis, University of Namur, BelgiumGoogle Scholar
  20. Isumbisho M, Sarmento H, Kaningini B, Micha J-C, Descy J-P (2006) Zooplankton of Lake Kivu, East Africa, half a century after the Tanganyika sardine introduction. J Plankton Res 28:971–989. doi:10.1093/plankt/fbl032CrossRefGoogle Scholar
  21. Kiefer F (1978) Freilebende Copepoda. In: Das Zooplankton der Binnengewasser, 2. Teil – Die Binnengewasser, 26, StuttgartGoogle Scholar
  22. Kořínek V (2002) Cladocera. In: Fernando CH (ed) Tropical freshwater zooplankton: identification, ecology and impact on fisheries. Backhuys Publishers, Leiden, The NetherlandsGoogle Scholar
  23. Lehman JT (1996) Pelagic food webs of the East African Great Lakes. In: Johnson TC, Odada EO (eds) The limnology, climatology and paleoclimatology of the East African Lakes. Gordon & Breach Publishers, AmsterdamGoogle Scholar
  24. Mavuti KM (1994) Durations of development and production estimates by two crustacean zooplankton species Thermocyclops oblongatus Sars (Copepoda) and Diaphanosoma excisum Sars (Cladocera), in Lake Naivasha, Kenya. Hydrobiologia 272:185–200. doi:10.1007/BF00006520CrossRefGoogle Scholar
  25. Naithani J, Darchambeau F, Deleersnijder E, Descy J-P, Wolanski E (2007) Study of the nutrient and plankton dynamics in Lake Tanganyika using a reduced-gravity model. Ecol Model 200:225–233. doi:10.1016/j.ecolmodel.2006.07.035CrossRefGoogle Scholar
  26. Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257. doi:10.1038/374255a0CrossRefGoogle Scholar
  27. Reyntjens D (1982) Bijdrage tot de limnologie van het Kivu-meer. M.Sc. thesis, University of Louvain, BelgiumGoogle Scholar
  28. Ricci CN (1987) Ecology of bdelloids: how to be successful. Hydrobiologia 147:117–127. doi:10.1007/BF00025734CrossRefGoogle Scholar
  29. Sarvala J, Salonen K, Järvinen M, Aro E, Huttula T, Kotilainen P, Kurki H, Langenberg V, Mannini P, Peltonen A, Plisnier P-D, Vuorinen I, Mölsä H, Lindqvist OV (1999) Trophic structure of Lake Tanganyika: carbon flows in the pelagic food web. Hydrobiologia 407:140–173. doi:10.1023/A:1003753918055 CrossRefGoogle Scholar
  30. Ueda H, Reid JW (2003) Introduction. In: Ueda H, Reid JW (eds) Copepoda: Cyclopoida: Genera Mesocyclops and Thermocyclops. Backhuys Publishers, Leiden, The NetherlandsGoogle Scholar
  31. Van de Velde I (1984) Revision of the African species of the genus Mesocyclops Sars, 1914 (Copepoda: Cyclopidae). Hydrobiologia 109:3–66. doi:10.1007/BF00006297 CrossRefGoogle Scholar
  32. Verbeke J (1957) Recherche écologique sur la faune des grands lacs de l’Est du Congo belge. Exploration Hydrobiologique des lacs Kivu, Edouard et Albert (1952–54). Bull Inst R Sci Nat Belg 3:1–177Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Chemical Oceanography UnitUniversity of LiègeLiègeBelgium
  2. 2.Institut Supérieur PédagogiqueBukavuD.R. Congo
  3. 3.Research Unit in Environmental and Evolutionary BiologyUniversity of NamurNamurBelgium

Personalised recommendations