Advertisement

Lake Kivu pp 85-105 | Cite as

Microbial Ecology of Lake Kivu

Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 5)

Abstract

We review available data on archaea, bacteria and small eukaryotes in an attempt to provide a general picture of microbial diversity, abundances and microbe-driven processes in Lake Kivu surface and intermediate waters (ca. 0–100 m). The various water layers present contrasting physical and chemical properties and harbour very different microbial communities supported by the vertical redox structure. For instance, we found a clear vertical segregation of archaeal and bacterial assemblages between the oxic and the anoxic zone of the surface waters. The presence of specific bacterial (e.g. Green Sulfur Bacteria) and archaeal (e.g. ammonia-oxidising archaea) communities and the prevailing physico-chemical conditions point towards the redoxcline as the most active and metabolically diverse water layer. The archaeal assemblage in the surface and intermediate water column layers was mainly composed by the phylum Crenarchaeota, by the recently defined phylum Thaumarchaeota and by the phylum Euryarchaeota. In turn, the bacterial assemblage comprised mainly ubiquitous members of planktonic assemblages of freshwater environments (Actinobacteria, Bacteroidetes and Betaproteobacteria among others) and other less commonly retrieved phyla (e.g. Chlorobi, Clostridium and Deltaproteobacteria). The community of small eukaryotes (<5 μm) mainly comprised Stramenopiles, Alveolata, Cryptophyta, Chytridiomycota, Kinetoplastea and Choanoflagellida, by decreasing order of richness. The total prokaryotic abundance ranged between 0.5 × 106 and 2.0 × 106 cells mL−1, with maxima located in the 0–20 m layer, while phycoerythrin-rich Synechococcus-like picocyanobacteria populations were comprised between 0.5 × 105 and 2.0 × 105 cells mL−1 in the same surface layer. Brown-coloured species of Green Sulfur Bacteria permanently developed at 11m depth in Kabuno Bay and sporadically in the anoxic waters of the lower mixolimnion of the main basin. The mean bacterial production was estimated to 336 mg C m−2 day−1. First estimates of the re-assimilation by bacterioplankton of dissolved organic matter excreted by phytoplankton showed high values of dissolved primary production (ca. 50% of total production). The bacterial carbon demand can totally be fuelled by phytoplankton production. Overall, recent studies have revealed a high microbial diversity in Lake Kivu, and point towards a central role of microbes in the biogeochemical and ecological functioning of the surface layers, comprising the mixolimnion and the upper chemocline.

Keywords

Green Sulfur Bacterium Anoxic Water Main Basin Bacterial Growth Efficiency Anaerobic Methane Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Auguet J-C, Casamayor EO (2008) A hotspot for cold crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10:1080–1086. doi: 10.1111/j.1462-2920.2007.01498.x PubMedCrossRefGoogle Scholar
  2. Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems. Limnol Oceanogr 36:1078–1090CrossRefGoogle Scholar
  3. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626. doi: 10.1038/35036572 PubMedCrossRefGoogle Scholar
  4. Borges AV, Abril G, Delille B, Descy J-P, Darchambeau F (2011) Diffusive methane emissions to the atmosphere from Lake Kivu (Eastern Africa). J Geophys Res 116:G03032. doi: 10.1029/2011JG001673 CrossRefGoogle Scholar
  5. Borrego CM, Garcia-Gil LG (1995) Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities. Photosynth Res 45:21–30. doi: 10.1007/BF00032232 CrossRefGoogle Scholar
  6. Borrego CM, Garcia-Gil LJ, Vila X, Cristina XP, Figueras JB, Abella CA (1997) Distribution of bacteriochlorophyll homologs in natural populations of brown-colored phototrophic sulfur bacteria. FEMS Microbiol Ecol 24:301–309. doi: 10.1016/S0168-6496(97)00071-8 CrossRefGoogle Scholar
  7. Bouvier T, del Giorgio PA, Gasol JM (2007) A comparative study of the cytometric characteristics of High and Low nucleic-acid bacterioplankton cells from different aquatic ecosystems. Environ Microbiol 9:2050–2066. doi: 10.1111/j.1462-2920.2007.01321.x PubMedCrossRefGoogle Scholar
  8. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252. doi: 10.1038/nrmicro1852 PubMedCrossRefGoogle Scholar
  9. Burgin AJ, Hamilton SK (2008) NO3-driven SO42− production in freshwater ecosystems: implications for N and S cycling. Ecosystems 11:908–922. doi: 10.1007/s10021-008-9169-5 CrossRefGoogle Scholar
  10. Burgin AJ, Yang WH, Hamilton SK, Silver WL (2011) Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Front Ecol Environ 9:44–52. doi: 10.1890/090227 CrossRefGoogle Scholar
  11. Callieri C, Corno G, Caravati E, Rasconi S, Contesini M, Bertoni R (2009) Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl Environ Microbiol 75:7298–7300. doi: 10.1128/AEM.01231-09 PubMedCrossRefGoogle Scholar
  12. Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O (2010) A cryptic sulfur cycle in oxygen-minimum zone waters off the Chilean coast. Science 330:1375–1378. doi: 10.1126/science.1196889 PubMedCrossRefGoogle Scholar
  13. Casamayor EO, Borrego CM (2009) Archaea. In: Likens GE (ed) Encyclopedia of inland waters, vol 3. Elsevier, OxfordGoogle Scholar
  14. Casamayor EO, García-Cantizano J, Pedrós-Alió C (2008) Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide-rich stratified lakes with oxic-anoxic interfaces. Limnol Oceanogr 53:1193–1203. doi: 10.4319/lo.2008.53.4.1193 CrossRefGoogle Scholar
  15. Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121. doi: 10.1007/s10021-001-0059-3 CrossRefGoogle Scholar
  16. del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541. doi: 10.1146/annurev.ecolsys.29.1.503 CrossRefGoogle Scholar
  17. Degens ET, von Herzen RP, Wong HK, Deuser WG, Jannasch HW (1973) Lake Kivu: structure, chemistry and biology of an East African Rift Lake. Geol Rundsch 62:245–277. doi: 10.1007/BF01826830 CrossRefGoogle Scholar
  18. DeLong EF, Pace NR (2001) Environmental diversity of Bacteria and Archaea. Syst Biol 50:470–478. doi: 10.1080/10635150118513 PubMedCrossRefGoogle Scholar
  19. Descy J-P, Sarmento H (2008) Microorganisms of the East African Great Lakes and their response to environmental changes. Freshwat Rev 1:59–73. doi: 10.1608/FRJ-1.1.4 Google Scholar
  20. Deuser WG, Degens ET, Harvey GR (1973) Methane in Lake Kivu: new data bearing its origin. Science 181:51–54. doi: 10.1126/science.181.4094.51 PubMedCrossRefGoogle Scholar
  21. Fuhrman JA, Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl Environ Microbiol 39:1085–1095PubMedGoogle Scholar
  22. Glaubitz S, Lueders T, Abraham WR, Jost G, Jürgens K, Labrenz M (2009) 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environ Microbiol 11:326–337. doi: 10.1111/j.1462-2920.2008.01770.x PubMedCrossRefGoogle Scholar
  23. Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane oxidizing archaea. Appl Environ Microbiol 69:5483–5491. doi: 10.1128/AEM.69.9.5483-5491.2003 PubMedCrossRefGoogle Scholar
  24. Hansell DA, Carlson CA (2002) Biogeochemistry of marine dissolved organic matter. Academic Press, San DiegoGoogle Scholar
  25. Imhoff JF, Thiel V (2010) Phylogeny and taxonomy of Chlorobiaceae. Photosynth Res 104:123–136. doi: 10.1007/s11120-009-9510-7 PubMedCrossRefGoogle Scholar
  26. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealso KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl Environ Microbiol 69:7224–7235. doi: 10.1128/AEM.69.12.7224-7235.2003 PubMedCrossRefGoogle Scholar
  27. Jannasch HW (1975) Methane oxidation in Lake Kivu (Central Africa). Limnol Oceanogr 80:860–864CrossRefGoogle Scholar
  28. Jensen MM, Petersen J, Dalsgaard T, Thamdrup B (2009) Pathways, rates, and regulation of N2 production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. Mar Chem 113:102–113. doi: 10.1016/j.marchem.2009.01.002 CrossRefGoogle Scholar
  29. Jochem FJ, Lavrentyev PJ, First MR (2004) Growth and grazing rates of bacteria groups with different apparent DNA content in the Gulf of Mexico. Mar Biol 145:1213–1225. doi: 10.1007/s00227-004-1406-7 CrossRefGoogle Scholar
  30. Jones RI, Grey J (2011) Biogenic methane in freshwater food webs. Freshwat Biol 56:213–229. doi: 10.1111/j.1365-2427.2010.02494.x CrossRefGoogle Scholar
  31. Jurgens G, Glöckner FO, Amann R, Saano A, Montonen L, Likolammi M, Münster U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56. doi: 10.1111/j.1574-6941.2000.tb00753.x PubMedGoogle Scholar
  32. Kirchman DL (2008) Microbial ecology of the oceans, 2nd edn. John Wiley and Sons, HobokenCrossRefGoogle Scholar
  33. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nat Lett 437:543–546. doi: 10.1038/nature03911 CrossRefGoogle Scholar
  34. Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, Mußmann M, Fuchs BM, Amann R, Lass U, Kuypers MMM (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–586. doi: 10.1038/nature07588 PubMedCrossRefGoogle Scholar
  35. Lebaron P, Servais P, Agogué H, Courties C, Joux F (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775–1782. doi: 10.1128/AEM.67.4.1775-1782.2001 PubMedCrossRefGoogle Scholar
  36. Lehours AC, Evans P, Bardot C, Joblin K, Gérard F (2007) Phylogenetic diversity of Archaea and Bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019. doi: 10.1128/AEM.01490-06 PubMedCrossRefGoogle Scholar
  37. Lewis WM Jr (2010) Biogeochemistry of tropical lakes. Verh Int Verein Limnol 30:1595–1603Google Scholar
  38. Libert X (2010) Diversité et activité du bactérioplancton du Lac Kivu, Afrique de l’Est. MSc thesis, University of Namur, BelgiumGoogle Scholar
  39. Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418. doi: 10.2307/1930126 CrossRefGoogle Scholar
  40. Llirós M, Alonso-Sáez L, Gich F, Plasencia A, Auguet O, Casamayor EO, Borrego CM (2011) Active bacteria and archaea cells fixing bicarbonate in the dark along the water column of a stratified eutrophic lagoon. FEMS Microbiol Ecol 77:370–384. doi: 10.1111/j.1574-6941.2011.01117.x PubMedCrossRefGoogle Scholar
  41. Llirós M, Gich F, Plasencia A, Auguet JC, Darchambeau F, Casamayor EO, Descy J-P, Borrego CM (2010) Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu. Appl Environ Microbiol 76:6853–6863. doi: 10.1128/AEM.02864-09 PubMedCrossRefGoogle Scholar
  42. Malherbe A (2008) Rôle des bactéries hétérotrophes dans les flux de carbone au Lac Kivu (Afrique). MSc thesis, Université Libre de Bruxelles, BelgiumGoogle Scholar
  43. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–981. doi: 10.1038/nature08465 PubMedCrossRefGoogle Scholar
  44. Morán XAG, Gasol JM, Pedrós-Alió C, Estrada M (2001) Dissolved and particulate primary production and bacterial production in offshore Antarctic waters during austral summer: coupled or uncoupled? Mar Ecol Prog Ser 222:25–30. doi: 10.3354/meps222025 CrossRefGoogle Scholar
  45. Morana C (2009) Contribution à l’étude du cycle du carbone au lac Kivu (Afrique de l’Est): échanges à l’interface algues-bactéries et bilan de masses. MSc thesis, University of Namur, BelgiumGoogle Scholar
  46. Myklestadt SM (2000) Dissolved organic carbon from phytoplankton. In: Wangersky P (ed) The handbook of environmental chemistry, vol 5. Springer-Verlag, BerlinGoogle Scholar
  47. Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. John Wiley and Sons, HobokenGoogle Scholar
  48. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49. doi: 10.1128/MMBR.00028-10 PubMedCrossRefGoogle Scholar
  49. Nzavuga Izere A (2008) Couplage entre la production primaire et la production bactérienne au Lac Kivu (Afrique de l’Est). MSc thesis, University of Namur, BelgiumGoogle Scholar
  50. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487. doi: 10.1126/science.1061338 PubMedCrossRefGoogle Scholar
  51. Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155CrossRefGoogle Scholar
  52. Overmann J (2006) The family Chlorobiaceae. In: Dworkin M, Falkow S, Rosenberg R, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 7. Springer, HeidelbergGoogle Scholar
  53. Pasche N, Dinkel C, Müller B, Schmid M, Wüest A, Wehrli B (2009) Physical and biogeochemical limits to internal nutrient loading of meromictic Lake Kivu. Limnol Oceanogr 54:1863–1873. doi: 10.4319/lo.2009.54.6.1863 CrossRefGoogle Scholar
  54. Pasche N, Alunga G, Mills K, Muvundja F, Ryves DB, Schurter M, Wehrli B, Schmid M (2010) Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response to recent environmental changes. J Paleolimnol 44:931–946. doi: 10.1007/s10933-010-9465-x CrossRefGoogle Scholar
  55. Pasche N, Schmid M, Vasquez F, Schubert CJ, Wüest A, Kessler JD, Pack MA, Reeburgh WS, Bürgmann H (2011) Methane sources and sinks in Lake Kivu. J Geophys Res 116:G03006. doi: 10.1029/2011JG001690 CrossRefGoogle Scholar
  56. Pernthaler J, Glöckner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64:4299–4306PubMedGoogle Scholar
  57. Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306. doi: 10.1016/j.mib.2011.04.007 PubMedCrossRefGoogle Scholar
  58. Pirlot S, Vanderheyden J, Descy J-P, Servais P (2005) Abundance and biomass of heterotrophic microorganisms in Lake Tanganyika. Freshwat Biol 50:1219–1232. doi: 10.1111/j.1365-2427.2005.01395.x CrossRefGoogle Scholar
  59. Sarmento H, Isumbisho M, Descy J-P (2006) Phytoplankton ecology of Lake Kivu (eastern Africa). J Plankton Res 28:815–829. doi: 10.1093/plankt/fbl017 CrossRefGoogle Scholar
  60. Sarmento H, Leitao M, Stoyneva M, Compère P, Couté A, Isumbisho M, Descy J-P (2007) Species diversity of pelagic algae in Lake Kivu (East Africa). Cryptogam Algol 28:245–269Google Scholar
  61. Sarmento H, Unrein F, Isumbisho M, Stenuite S, Gasol JM, Descy J-P (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshwat Biol 53:756–771. doi: 10.1111/j.1365-2427.2007.01939.x CrossRefGoogle Scholar
  62. Sarmento H, Isumbisho M, Stenuite S, Darchambeau F, Leporcq B, Descy J-P (2009) Phytoplankton ecology of Lake Kivu (eastern Africa): biomass, production and elemental ratios. Verh Int Verein Limnol 30:709–713Google Scholar
  63. Schattenhofer M, Wulfa J, Kostadinov I, Glöckner FO, Zubkov MV, Fuchs BM (2011) Phylogenetic characterisation of picoplanktonic populations with high and low nucleic acid content in the North Atlantic Ocean. Syst Appl Microbiol 34:470–475. doi: 10.1016/j.syapm.2011.01.008 PubMedCrossRefGoogle Scholar
  64. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488. doi: 10.1038/nrmicro1159 PubMedCrossRefGoogle Scholar
  65. Schmitz D, Kufferath J (1955) Problèmes posés par la présence de gaz dissous dans les eaux profondes du Lac Kivu. Acad Roy Sci Coloniales, Bull Séances 1:326–356Google Scholar
  66. Schmitz M (2011) Implication des populations microbiennes dans le cycle de l’azote au Lac Kivu. MSc thesis, University of Namur, BelgiumGoogle Scholar
  67. Schoell M, Tietze K, Schoberth SM (1988) Origin of methane in Lake Kivu (east-central Africa). Chem Geol 71:257–265. doi: 10.1016/0016-7037(80)90155-6 CrossRefGoogle Scholar
  68. Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8:1857–1863. doi: 10.1111/j.1462-2920.2006.01074.x PubMedCrossRefGoogle Scholar
  69. Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340. doi: 10.1016/j.tim.2010.06.003 PubMedCrossRefGoogle Scholar
  70. Stenuite S, Tarbe A-L, Sarmento H, Unrein F, Pirlot S, Sinyinza D, Thill S, Lecomte M, Leporcq B, Gasol JM, Descy J-P (2009a) Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. J Plankton Res 31:1531–1544. doi: 10.1093/plankt/fbp090 CrossRefGoogle Scholar
  71. Stenuite S, Pirlot S, Tarbe A-L, Sarmento H, Lecomte M, Thill S, Leporcq B, Sinyinza D, Descy J-P, Servais P (2009b) Abundance and production of bacteria, and relationship to phytoplankton production, in a large tropical lake (Lake Tanganyika). Freshwat Biol 54:1300–1311. doi: 10.1111/j.1365-2427.2009.02177.x CrossRefGoogle Scholar
  72. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629. doi: 10.1128/AEM.67.8.3618-3629.2001 PubMedCrossRefGoogle Scholar
  73. Tarbe A-L (2010) Les protistes, acteurs-clés du réseau trophique pélagique au Lac Tanganyika. PhD thesis, University of Namur, BelgiumGoogle Scholar
  74. Tarbe A-L, Unrein F, Stenuite S, Pirlot S, Sarmento H, Sinyinza D, Descy J-P (2011) Protist herbivory: a key pathway in the pelagic food web of Lake Tanganyika. Microb Ecol 62:314–323. doi: 10.1007/s00248-011-9817-8 PubMedCrossRefGoogle Scholar
  75. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995. doi: 10.1111/j.1462-2920.2005.00906.x PubMedCrossRefGoogle Scholar
  76. Urbach E, Vergin KL, Larson GL, Giovannoni SJ (2007) Bacterioplankton communities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water populations. Hydrobiologia 574:161–177. doi: 10.1007/s10750-006-0351-5 CrossRefGoogle Scholar
  77. Wimba L (2008) Contribution à l’étude du bactérioplancton du Lac Kivu (Afrique de l’Est): Abondance, distribution et profils des acides gras. MSc thesis, University of Namur, BelgiumGoogle Scholar
  78. Zlotnik I, Dubinsky Z (1989) The effect of light and temperature on DOC excretion by phytoplankton. Limnol Oceanogr 34:831–839CrossRefGoogle Scholar
  79. Zubkov MV, Fuchs BM, Burkill PH, Amann R (2001) Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl Environ Microbiol 67:5210–5218. doi: 10.1128/AEM.67.11.5210-5218.2001 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Genetics and MicrobiologyAutonomous University of Barcelona (UAB)Barcelona, CatalunyaSpain
  2. 2.Research Unit in Environmental and Evolutionary BiologyUniversity of NamurNamurBelgium
  3. 3.Departement Aard- en Omgevingswetenschappen, KatholiekeUniversiteit LeuvenLeuvenBelgium
  4. 4.Institut Supérieur PédagogiqueBukavuD.R. Congo
  5. 5.National University of RwandaButareRwanda
  6. 6.Ecologie des Systèmes AquatiquesUniversité Libre de BruxellesBrusselsBelgium
  7. 7.Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, and Catalan Institute for Water ResearchUniversity of GironaGirona, CatalunyaSpain
  8. 8.Chemical Oceanography UnitUniversity of LiègeLiègeBelgium

Personalised recommendations