Skip to main content

Microbial Ecology of Lake Kivu

  • Chapter
  • First Online:
Book cover Lake Kivu

Abstract

We review available data on archaea, bacteria and small eukaryotes in an attempt to provide a general picture of microbial diversity, abundances and microbe-driven processes in Lake Kivu surface and intermediate waters (ca. 0–100 m). The various water layers present contrasting physical and chemical properties and harbour very different microbial communities supported by the vertical redox structure. For instance, we found a clear vertical segregation of archaeal and bacterial assemblages between the oxic and the anoxic zone of the surface waters. The presence of specific bacterial (e.g. Green Sulfur Bacteria) and archaeal (e.g. ammonia-oxidising archaea) communities and the prevailing physico-chemical conditions point towards the redoxcline as the most active and metabolically diverse water layer. The archaeal assemblage in the surface and intermediate water column layers was mainly composed by the phylum Crenarchaeota, by the recently defined phylum Thaumarchaeota and by the phylum Euryarchaeota. In turn, the bacterial assemblage comprised mainly ubiquitous members of planktonic assemblages of freshwater environments (Actinobacteria, Bacteroidetes and Betaproteobacteria among others) and other less commonly retrieved phyla (e.g. Chlorobi, Clostridium and Deltaproteobacteria). The community of small eukaryotes (<5 μm) mainly comprised Stramenopiles, Alveolata, Cryptophyta, Chytridiomycota, Kinetoplastea and Choanoflagellida, by decreasing order of richness. The total prokaryotic abundance ranged between 0.5 × 106 and 2.0 × 106 cells mL−1, with maxima located in the 0–20 m layer, while phycoerythrin-rich Synechococcus-like picocyanobacteria populations were comprised between 0.5 × 105 and 2.0 × 105 cells mL−1 in the same surface layer. Brown-coloured species of Green Sulfur Bacteria permanently developed at 11m depth in Kabuno Bay and sporadically in the anoxic waters of the lower mixolimnion of the main basin. The mean bacterial production was estimated to 336 mg C m−2 day−1. First estimates of the re-assimilation by bacterioplankton of dissolved organic matter excreted by phytoplankton showed high values of dissolved primary production (ca. 50% of total production). The bacterial carbon demand can totally be fuelled by phytoplankton production. Overall, recent studies have revealed a high microbial diversity in Lake Kivu, and point towards a central role of microbes in the biogeochemical and ecological functioning of the surface layers, comprising the mixolimnion and the upper chemocline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auguet J-C, Casamayor EO (2008) A hotspot for cold crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10:1080–1086. doi:10.1111/j.1462-2920.2007.01498.x

    Article  PubMed  CAS  Google Scholar 

  • Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems. Limnol Oceanogr 36:1078–1090

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626. doi:10.1038/35036572

    Article  PubMed  CAS  Google Scholar 

  • Borges AV, Abril G, Delille B, Descy J-P, Darchambeau F (2011) Diffusive methane emissions to the atmosphere from Lake Kivu (Eastern Africa). J Geophys Res 116:G03032. doi:10.1029/2011JG001673

    Article  Google Scholar 

  • Borrego CM, Garcia-Gil LG (1995) Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities. Photosynth Res 45:21–30. doi:10.1007/BF00032232

    Article  CAS  Google Scholar 

  • Borrego CM, Garcia-Gil LJ, Vila X, Cristina XP, Figueras JB, Abella CA (1997) Distribution of bacteriochlorophyll homologs in natural populations of brown-colored phototrophic sulfur bacteria. FEMS Microbiol Ecol 24:301–309. doi:10.1016/S0168-6496(97)00071-8

    Article  CAS  Google Scholar 

  • Bouvier T, del Giorgio PA, Gasol JM (2007) A comparative study of the cytometric characteristics of High and Low nucleic-acid bacterioplankton cells from different aquatic ecosystems. Environ Microbiol 9:2050–2066. doi:10.1111/j.1462-2920.2007.01321.x

    Article  PubMed  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252. doi:10.1038/nrmicro1852

    Article  PubMed  CAS  Google Scholar 

  • Burgin AJ, Hamilton SK (2008) NO 3 -driven SO 2−4 production in freshwater ecosystems: implications for N and S cycling. Ecosystems 11:908–922. doi:10.1007/s10021-008-9169-5

    Article  CAS  Google Scholar 

  • Burgin AJ, Yang WH, Hamilton SK, Silver WL (2011) Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Front Ecol Environ 9:44–52. doi:10.1890/090227

    Article  Google Scholar 

  • Callieri C, Corno G, Caravati E, Rasconi S, Contesini M, Bertoni R (2009) Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl Environ Microbiol 75:7298–7300. doi:10.1128/AEM.01231-09

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O (2010) A cryptic sulfur cycle in oxygen-minimum zone waters off the Chilean coast. Science 330:1375–1378. doi:10.1126/science.1196889

    Article  PubMed  CAS  Google Scholar 

  • Casamayor EO, Borrego CM (2009) Archaea. In: Likens GE (ed) Encyclopedia of inland waters, vol 3. Elsevier, Oxford

    Google Scholar 

  • Casamayor EO, García-Cantizano J, Pedrós-Alió C (2008) Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide-rich stratified lakes with oxic-anoxic interfaces. Limnol Oceanogr 53:1193–1203. doi:10.4319/lo.2008.53.4.1193

    Article  CAS  Google Scholar 

  • Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121. doi:10.1007/s10021-001-0059-3

    Article  CAS  Google Scholar 

  • del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541. doi:10.1146/annurev.ecolsys.29.1.503

    Article  Google Scholar 

  • Degens ET, von Herzen RP, Wong HK, Deuser WG, Jannasch HW (1973) Lake Kivu: structure, chemistry and biology of an East African Rift Lake. Geol Rundsch 62:245–277. doi:10.1007/BF01826830

    Article  CAS  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of Bacteria and Archaea. Syst Biol 50:470–478. doi:10.1080/10635150118513

    Article  PubMed  CAS  Google Scholar 

  • Descy J-P, Sarmento H (2008) Microorganisms of the East African Great Lakes and their response to environmental changes. Freshwat Rev 1:59–73. doi:10.1608/FRJ-1.1.4

    Google Scholar 

  • Deuser WG, Degens ET, Harvey GR (1973) Methane in Lake Kivu: new data bearing its origin. Science 181:51–54. doi:10.1126/science.181.4094.51

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman JA, Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl Environ Microbiol 39:1085–1095

    PubMed  CAS  Google Scholar 

  • Glaubitz S, Lueders T, Abraham WR, Jost G, Jürgens K, Labrenz M (2009) 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environ Microbiol 11:326–337. doi:10.1111/j.1462-2920.2008.01770.x

    Article  PubMed  CAS  Google Scholar 

  • Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane oxidizing archaea. Appl Environ Microbiol 69:5483–5491. doi:10.1128/AEM.69.9.5483-5491.2003

    Article  PubMed  CAS  Google Scholar 

  • Hansell DA, Carlson CA (2002) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego

    Google Scholar 

  • Imhoff JF, Thiel V (2010) Phylogeny and taxonomy of Chlorobiaceae. Photosynth Res 104:123–136. doi:10.1007/s11120-009-9510-7

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealso KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl Environ Microbiol 69:7224–7235. doi:10.1128/AEM.69.12.7224-7235.2003

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW (1975) Methane oxidation in Lake Kivu (Central Africa). Limnol Oceanogr 80:860–864

    Article  Google Scholar 

  • Jensen MM, Petersen J, Dalsgaard T, Thamdrup B (2009) Pathways, rates, and regulation of N2 production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. Mar Chem 113:102–113. doi:10.1016/j.marchem.2009.01.002

    Article  CAS  Google Scholar 

  • Jochem FJ, Lavrentyev PJ, First MR (2004) Growth and grazing rates of bacteria groups with different apparent DNA content in the Gulf of Mexico. Mar Biol 145:1213–1225. doi:10.1007/s00227-004-1406-7

    Article  Google Scholar 

  • Jones RI, Grey J (2011) Biogenic methane in freshwater food webs. Freshwat Biol 56:213–229. doi:10.1111/j.1365-2427.2010.02494.x

    Article  CAS  Google Scholar 

  • Jurgens G, Glöckner FO, Amann R, Saano A, Montonen L, Likolammi M, Münster U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56. doi:10.1111/j.1574-6941.2000.tb00753.x

    PubMed  CAS  Google Scholar 

  • Kirchman DL (2008) Microbial ecology of the oceans, 2nd edn. John Wiley and Sons, Hoboken

    Book  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nat Lett 437:543–546. doi:10.1038/nature03911

    Article  Google Scholar 

  • Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, Mußmann M, Fuchs BM, Amann R, Lass U, Kuypers MMM (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–586. doi:10.1038/nature07588

    Article  PubMed  CAS  Google Scholar 

  • Lebaron P, Servais P, Agogué H, Courties C, Joux F (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775–1782. doi:10.1128/AEM.67.4.1775-1782.2001

    Article  PubMed  CAS  Google Scholar 

  • Lehours AC, Evans P, Bardot C, Joblin K, Gérard F (2007) Phylogenetic diversity of Archaea and Bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019. doi:10.1128/AEM.01490-06

    Article  PubMed  CAS  Google Scholar 

  • Lewis WM Jr (2010) Biogeochemistry of tropical lakes. Verh Int Verein Limnol 30:1595–1603

    CAS  Google Scholar 

  • Libert X (2010) Diversité et activité du bactérioplancton du Lac Kivu, Afrique de l’Est. MSc thesis, University of Namur, Belgium

    Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418. doi:10.2307/1930126

    Article  Google Scholar 

  • Llirós M, Alonso-Sáez L, Gich F, Plasencia A, Auguet O, Casamayor EO, Borrego CM (2011) Active bacteria and archaea cells fixing bicarbonate in the dark along the water column of a stratified eutrophic lagoon. FEMS Microbiol Ecol 77:370–384. doi:10.1111/j.1574-6941.2011.01117.x

    Article  PubMed  Google Scholar 

  • Llirós M, Gich F, Plasencia A, Auguet JC, Darchambeau F, Casamayor EO, Descy J-P, Borrego CM (2010) Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu. Appl Environ Microbiol 76:6853–6863. doi:10.1128/AEM.02864-09

    Article  PubMed  Google Scholar 

  • Malherbe A (2008) Rôle des bactéries hétérotrophes dans les flux de carbone au Lac Kivu (Afrique). MSc thesis, Université Libre de Bruxelles, Belgium

    Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–981. doi:10.1038/nature08465

    Article  PubMed  CAS  Google Scholar 

  • Morán XAG, Gasol JM, Pedrós-Alió C, Estrada M (2001) Dissolved and particulate primary production and bacterial production in offshore Antarctic waters during austral summer: coupled or uncoupled? Mar Ecol Prog Ser 222:25–30. doi:10.3354/meps222025

    Article  Google Scholar 

  • Morana C (2009) Contribution à l’étude du cycle du carbone au lac Kivu (Afrique de l’Est): échanges à l’interface algues-bactéries et bilan de masses. MSc thesis, University of Namur, Belgium

    Google Scholar 

  • Myklestadt SM (2000) Dissolved organic carbon from phytoplankton. In: Wangersky P (ed) The handbook of environmental chemistry, vol 5. Springer-Verlag, Berlin

    Google Scholar 

  • Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. John Wiley and Sons, Hoboken

    Google Scholar 

  • Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49. doi:10.1128/MMBR.00028-10

    Article  PubMed  CAS  Google Scholar 

  • Nzavuga Izere A (2008) Couplage entre la production primaire et la production bactérienne au Lac Kivu (Afrique de l’Est). MSc thesis, University of Namur, Belgium

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487. doi:10.1126/science.1061338

    Article  PubMed  CAS  Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155

    Article  CAS  Google Scholar 

  • Overmann J (2006) The family Chlorobiaceae. In: Dworkin M, Falkow S, Rosenberg R, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 7. Springer, Heidelberg

    Google Scholar 

  • Pasche N, Dinkel C, Müller B, Schmid M, Wüest A, Wehrli B (2009) Physical and biogeochemical limits to internal nutrient loading of meromictic Lake Kivu. Limnol Oceanogr 54:1863–1873. doi:10.4319/lo.2009.54.6.1863

    Article  CAS  Google Scholar 

  • Pasche N, Alunga G, Mills K, Muvundja F, Ryves DB, Schurter M, Wehrli B, Schmid M (2010) Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response to recent environmental changes. J Paleolimnol 44:931–946. doi:10.1007/s10933-010-9465-x

    Article  Google Scholar 

  • Pasche N, Schmid M, Vasquez F, Schubert CJ, Wüest A, Kessler JD, Pack MA, Reeburgh WS, Bürgmann H (2011) Methane sources and sinks in Lake Kivu. J Geophys Res 116:G03006. doi:10.1029/2011JG001690

    Article  Google Scholar 

  • Pernthaler J, Glöckner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64:4299–4306

    PubMed  CAS  Google Scholar 

  • Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306. doi:10.1016/j.mib.2011.04.007

    Article  PubMed  CAS  Google Scholar 

  • Pirlot S, Vanderheyden J, Descy J-P, Servais P (2005) Abundance and biomass of heterotrophic microorganisms in Lake Tanganyika. Freshwat Biol 50:1219–1232. doi:10.1111/j.1365-2427.2005.01395.x

    Article  Google Scholar 

  • Sarmento H, Isumbisho M, Descy J-P (2006) Phytoplankton ecology of Lake Kivu (eastern Africa). J Plankton Res 28:815–829. doi:10.1093/plankt/fbl017

    Article  CAS  Google Scholar 

  • Sarmento H, Leitao M, Stoyneva M, Compère P, Couté A, Isumbisho M, Descy J-P (2007) Species diversity of pelagic algae in Lake Kivu (East Africa). Cryptogam Algol 28:245–269

    Google Scholar 

  • Sarmento H, Unrein F, Isumbisho M, Stenuite S, Gasol JM, Descy J-P (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshwat Biol 53:756–771. doi:10.1111/j.1365-2427.2007.01939.x

    Article  Google Scholar 

  • Sarmento H, Isumbisho M, Stenuite S, Darchambeau F, Leporcq B, Descy J-P (2009) Phytoplankton ecology of Lake Kivu (eastern Africa): biomass, production and elemental ratios. Verh Int Verein Limnol 30:709–713

    Google Scholar 

  • Schattenhofer M, Wulfa J, Kostadinov I, Glöckner FO, Zubkov MV, Fuchs BM (2011) Phylogenetic characterisation of picoplanktonic populations with high and low nucleic acid content in the North Atlantic Ocean. Syst Appl Microbiol 34:470–475. doi:10.1016/j.syapm.2011.01.008

    Article  PubMed  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488. doi:10.1038/nrmicro1159

    Article  PubMed  CAS  Google Scholar 

  • Schmitz D, Kufferath J (1955) Problèmes posés par la présence de gaz dissous dans les eaux profondes du Lac Kivu. Acad Roy Sci Coloniales, Bull Séances 1:326–356

    Google Scholar 

  • Schmitz M (2011) Implication des populations microbiennes dans le cycle de l’azote au Lac Kivu. MSc thesis, University of Namur, Belgium

    Google Scholar 

  • Schoell M, Tietze K, Schoberth SM (1988) Origin of methane in Lake Kivu (east-central Africa). Chem Geol 71:257–265. doi:10.1016/0016-7037(80)90155-6

    Article  CAS  Google Scholar 

  • Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8:1857–1863. doi:10.1111/j.1462-2920.2006.01074.x

    Article  PubMed  CAS  Google Scholar 

  • Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340. doi:10.1016/j.tim.2010.06.003

    Article  PubMed  CAS  Google Scholar 

  • Stenuite S, Tarbe A-L, Sarmento H, Unrein F, Pirlot S, Sinyinza D, Thill S, Lecomte M, Leporcq B, Gasol JM, Descy J-P (2009a) Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. J Plankton Res 31:1531–1544. doi:10.1093/plankt/fbp090

    Article  CAS  Google Scholar 

  • Stenuite S, Pirlot S, Tarbe A-L, Sarmento H, Lecomte M, Thill S, Leporcq B, Sinyinza D, Descy J-P, Servais P (2009b) Abundance and production of bacteria, and relationship to phytoplankton production, in a large tropical lake (Lake Tanganyika). Freshwat Biol 54:1300–1311. doi:10.1111/j.1365-2427.2009.02177.x

    Article  CAS  Google Scholar 

  • Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629. doi:10.1128/AEM.67.8.3618-3629.2001

    Article  PubMed  CAS  Google Scholar 

  • Tarbe A-L (2010) Les protistes, acteurs-clés du réseau trophique pélagique au Lac Tanganyika. PhD thesis, University of Namur, Belgium

    Google Scholar 

  • Tarbe A-L, Unrein F, Stenuite S, Pirlot S, Sarmento H, Sinyinza D, Descy J-P (2011) Protist herbivory: a key pathway in the pelagic food web of Lake Tanganyika. Microb Ecol 62:314–323. doi:10.1007/s00248-011-9817-8

    Article  PubMed  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995. doi:10.1111/j.1462-2920.2005.00906.x

    Article  PubMed  CAS  Google Scholar 

  • Urbach E, Vergin KL, Larson GL, Giovannoni SJ (2007) Bacterioplankton communities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water populations. Hydrobiologia 574:161–177. doi:10.1007/s10750-006-0351-5

    Article  Google Scholar 

  • Wimba L (2008) Contribution à l’étude du bactérioplancton du Lac Kivu (Afrique de l’Est): Abondance, distribution et profils des acides gras. MSc thesis, University of Namur, Belgium

    Google Scholar 

  • Zlotnik I, Dubinsky Z (1989) The effect of light and temperature on DOC excretion by phytoplankton. Limnol Oceanogr 34:831–839

    Article  CAS  Google Scholar 

  • Zubkov MV, Fuchs BM, Burkill PH, Amann R (2001) Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl Environ Microbiol 67:5210–5218. doi:10.1128/AEM.67.11.5210-5218.2001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Llirós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Llirós, M. et al. (2012). Microbial Ecology of Lake Kivu. In: Descy, JP., Darchambeau, F., Schmid, M. (eds) Lake Kivu. Aquatic Ecology Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4243-7_6

Download citation

Publish with us

Policies and ethics