Lake Kivu pp 47-66 | Cite as

Variability of Carbon Dioxide and Methane in the Epilimnion of Lake Kivu

Part of the Aquatic Ecology Series book series (AQEC, volume 5)


We report a dataset of the partial pressure of CO2 (pCO2) and methane concentrations (CH4) in the surface waters of Lake Kivu obtained during four cruises covering the two main seasons (rainy and dry). Spatial gradients of surface pCO2 and CH4 concentrations were modest in the main basin. In Kabuno Bay, pCO2 and CH4 concentrations in surface waters were higher, owing to the stronger influence of subaquatic springs from depth. Seasonal variations of pCO2 and CH4 in the main basin of Lake Kivu were strongly driven by deepening of the epilimnion and the resulting entrainment of water characterized by higher pCO2 and CH4 concentrations. Physical and chemical vertical patterns in Kabuno Bay were seasonally stable, owing to a stronger stratification and smaller surface area inducing fetch limitation of wind driven turbulence. A global and regional cross-system comparison of pCO2 and CH4 concentrations in surface waters of lakes highlights the peculiarity of Kabuno Bay in terms of pCO2 values in surface waters. In terms of surface CH4 concentrations, both Kabuno Bay and the main basin of Lake Kivu are at the lower end of values in lakes globally, despite the huge amounts of CH4 and CO2 in the deeper layers of the lake.


Total Organic Carbon Dissolve Inorganic Carbon Particulate Organic Carbon Total Alkalinity East African Rift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Boniface Kaningini and Pascal Isumbisho Mwapu (Institut Supérieur Pédagogique, Bukavu, Democratic Republic of the Congo) and Laetitia Nyina-wamwiza (National University of Rwanda, Butare, Rwanda) and their respective teams for logistic support during the cruises, to Sebastian Sobek for sharing his pCO2 database and reviewing the previous versions of the manuscript. This work was funded by the Fonds National de la Recherche Scientifique (FNRS) under the CAKI (Cycle du carbone et des nutriments au Lac Kivu) project (contract n° 2.4.598.07), and contributes to the European Research Council starting grant project AFRIVAL (African river basins: catchment-scale carbon fluxes and transformations, 240002) and to the Belgian Federal Science Policy Office EAGLES (East African Great Lake Ecosystem Sensitivity to changes, SD/AR/02A) project. AVB, BD and GL are research associates at the FNRS. FD was a postdoctoral researcher at the FNRS.


  1. Abril G, Iversen N (2002) Methane dynamics in a shallow, non-tidal, estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181. doi: 10.3354/meps230171 CrossRefGoogle Scholar
  2. Bade DL, Carpenter SR, Cole JJ, Hanson PC, Hesslein RH (2004) Controls of δ13C-DIC in lakes: geochemistry, lake metabolism, and morphometry. Limnol Oceanogr 49:1160–1172. doi: 10.4319/lo.2004.49.4.1160 CrossRefGoogle Scholar
  3. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:GB4009. doi: 10.1029/2004GB002238
  4. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane ­emissions offset the continental carbon sink. Science 331:50.  doi:10.1126/science.1196808 PubMedCrossRefGoogle Scholar
  5. Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100. doi: 10.1038/ngeo101 CrossRefGoogle Scholar
  6. Borges AV, Abril G, Delille B, Descy J-P, Darchambeau F (2011) Diffusive methane emissions to the atmosphere from Lake Kivu (Eastern Africa). J Geophys Res 116:G03032. doi: 10.1029/2011JG001673
  7. Branchu P (2001) Cycle des éléments majeurs et traces dans les grands lacs de rift tropicaux (Lacs Tanganyika et Malawi): processus et enregistrements biogéochimiques. Annales du musée royal de l’Afrique centrale, sciences géologiques, 106, Tervuren, BelgiqueGoogle Scholar
  8. Branchu P, Bergonzini L, Ambrosi J-P, Cardinal D, Delalande M, Pons-Branchu E, Benedetti M (2010) Hydrochemistry (major and trace elements) of Lake Malawi (Nyasa), Tanzanian Northern Basin: local versus global considerations. Hydrol Earth Syst Sci Discuss 7:4371–4409. doi: 10.5194/hessd-7-4371-2010 CrossRefGoogle Scholar
  9. Chen Y-H, Prinn RG (2006) Estimation of atmospheric methane emission between 1996–2001 using a 3-D global chemical transport model. J Geophys Res 111:D10307. doi: 10.1029/2005JD006058 CrossRefGoogle Scholar
  10. Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656. doi: 10.4319/lo.1998.43.4.0647 CrossRefGoogle Scholar
  11. Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110. doi: 10.1071/MF00084 CrossRefGoogle Scholar
  12. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184. doi: 10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  13. Craig H (1974) Lake Tanganyika geochemical and hydrographic study: 1973 expedition. Scripps Institution of Oceanography, University of California, San DiegoGoogle Scholar
  14. del Giorgio PA, Cole JJ, Caraco NF, Peters RH (1999) Linking planktonic biomass and meta­bolism to net gas fluxes in northern temperate lakes. Ecology 80:1422–1431. doi:10.1890/0012-9658(1999)080[1422:LPBAMT]2.0.CO;2CrossRefGoogle Scholar
  15. Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920CrossRefGoogle Scholar
  16. Frankignoulle M, Borges AV (2001) Direct and indirect pCO2 measurements in a wide range of pCO2 and salinity values (the Scheldt estuary). Aquat Geochem 7:267–273. doi: 10.1023/A:1015251010481 CrossRefGoogle Scholar
  17. Frankignoulle M, Borges A, Biondo R (2001) A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Res 35:1344–1347. doi: 10.1016/S0043-1354(00)00369-9 PubMedCrossRefGoogle Scholar
  18. Gran G (1952) Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol Acta 5:209–218Google Scholar
  19. Hecky RE, Hesslein RH (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J N Am Benthol Soc 14:631–653CrossRefGoogle Scholar
  20. Jannasch HW (1975) Methane oxidation in Lake Kivu (central Africa). Limnol Oceanogr 20:860–864CrossRefGoogle Scholar
  21. Kelly CA, Fee E, Ramlal PS, Rudd JWM, Hesslein RH, Anema C, Schindler EU (2001) Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol Oceanogr 46:1054–1064. doi: 10.4319/lo.2001.46.5.1054 CrossRefGoogle Scholar
  22. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22. doi: 10.1016/j.jhydrol.2004.03.028 CrossRefGoogle Scholar
  23. Ludwig W, Probst JL, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Glob Biogeochem Cycles 10:23–41. doi: 10.1029/95GB02925 CrossRefGoogle Scholar
  24. Marotta H, Duarte CM, Sobek S, Enrich-Prast A (2009) Large CO2 disequilibria in tropical lakes. Glob Biogeochem Cycles 23:GB4022. doi: 10.1029/2008GB003434
  25. Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2006) Dissociation constants of carbonic acid in sea water as a function of salinity and temperature. Mar Chem 100:80–94. doi: 10.1016/j.marchem.2005.12.001 CrossRefGoogle Scholar
  26. Miyajima T, Yamada Y, Hanba YT, Yoshii K, Koitabashi T, Wada E (1995) Determining the stable-isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IRMS. Limnol Oceanogr 40:994–1000CrossRefGoogle Scholar
  27. Pasche N, Schmid M, Vazquez F, Schubert C, Wüest A, Kessler J, Pack M, Reeburgh WS, Buergmann H (2011) Methane sources and sinks in Lake Kivu. J Geophys Res 116. doi: 10.1029/2011JG001690
  28. Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bogs lakes in northern Wisconsin, U.S.A. Can J Fish Aquat Sci 56:265–274. doi: 10.1139/f98-182 CrossRefGoogle Scholar
  29. Roehm CL, Prairie YT, del Giorgio PA (2009) The pCO2 dynamics in lakes in the boreal region of northern Québec, Canada. Glob Biogeochem Cycles 23:GB3013. doi: 10.1029/2008GB003297
  30. Schindler DW (1971) A hypothesis to explain differences and similarities among lakes in the Experimental Lakes Area, northwestern Ontario. J Fish Res Board Can 28:295–301. doi: 10.1139/f71-039 CrossRefGoogle Scholar
  31. Schmid M, Halbwachs M, Wehrli B, Wüest A (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption. Geochem Geophys Geosyst 6:Q07009. doi: 10.1029/2004GC000892 CrossRefGoogle Scholar
  32. Schoell M, Tietze K, Schoberth SM (1988) Origin of methane in Lake Kivu (East-Central Africa). Chem Geol 71:257–265. doi: 10.1016/0009-2541(88)90119-2 CrossRefGoogle Scholar
  33. Sobek S, Algesten G, Bergström A-K, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO2 in boreal lakes. Glob Chang Biol 9:630–641. doi: 10.1046/j.1365-2486.2003.00619.x CrossRefGoogle Scholar
  34. Sobek S, Tranvik LJ, Cole JJ (2005) Temperature independence of carbon dioxide supersaturation in global lakes. Glob Biogeochem Cycles 19:GB2003.  doi:10.1029/2004GB002264 CrossRefGoogle Scholar
  35. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res II 56:554–577. doi: 10.1016/j.dsr2.2008.12.009 CrossRefGoogle Scholar
  36. Tassi F, Vaselli O, Tedesco D, Montegrossi G, Darrah T, Cuoco E, Mapendano MY, Poreda R, Delgado Huertas A (2009) Water and gas chemistry at Lake Kivu (DRC): geochemical ­evidence of vertical and horizontal heterogeneities in a multibasin structure. Geochem Geophys Geosyst 10:Q02005. doi: 10.1029/2008GC002191 CrossRefGoogle Scholar
  37. Teodoru C, del Giorgio PA, Prairie YT, Camire M (2009) Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada. Glob Biogeochem Cycles 23:GB2012.  doi:10.1029/2008GB003404 CrossRefGoogle Scholar
  38. Tietze K, Geyh M, Müller H, Schröder L, Stahl W, Wehner H (1980) The genesis of the methane in Lake Kivu (Central Africa). Geol Rundsch 69:452–472. doi: 10.1007/BF02104549 CrossRefGoogle Scholar
  39. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298 CrossRefGoogle Scholar
  40. Verschuren D (1999) Influence of depth and mixing regime on sedimentation in a small, fluctuating tropical soda lake. Limnol Oceanogr 44:1103–1113. doi: 10.4319/lo.1999.44.4.1103 CrossRefGoogle Scholar
  41. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382. doi: 10.1029/92JC00188 CrossRefGoogle Scholar
  42. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80. doi: 10.1021/je60068a029 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Chemical Oceanography UnitUniversity of LiègeLiègeBelgium
  2. 2.Departement Aard- en OmgevingswetenschappenKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Laboratoire Environnements et Paléoenvironnements OcéaniquesUniversité de Bordeaux 1BordeauxFrance
  4. 4.Institut de Recherche pour le Développement, Laboratorio de Potamologia AmazônicaUniversidad Federal do AmazonasManausBrazil
  5. 5.Laboratoire d’OcéanologieUniversité de LiègeLiègeBelgium
  6. 6.Ecologie des Systèmes AquatiquesUniversité Libre de BruxellesBrusselsBelgium
  7. 7.Research Unit in Environmental and Evolutionary BiologyUniversity of NamurNamurBelgium

Personalised recommendations