Advertisement

Lake Kivu pp 31-45 | Cite as

Nutrient Cycling in Lake Kivu

Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 5)

Abstract

This chapter investigates phosphorus (P), nitrogen (N), and silica (Si) cycling in tropical Lake Kivu. Its deep water is characterised by high concentrations of nutrients, which are slowly released to the surface mixed layer by an upward advective transport. The nutrient inputs (rivers, internal recycling and subaquatic springs) and outputs (outflow, sedimentation) are quantified to determine each nutrient cycle. Our analyses revealed that N and P cycles are dominated by internal processes, which are internal recycling and burial. P and N external inputs supply only about 15% (P) to 20% (N) of the total inputs to the epilimnion. In contrast, riverine inflows and internal recycling contribute equally to Si inputs.

Keywords

External Input Sediment Trap Deep Zone Dissolve Inorganic Phosphorus Biogenic Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Swiss National Science Foundation and the Swiss Agency for Development and Cooperation under grant 207021-109710 (Nutrient cycling and methane production in Lake Kivu).

References

  1. Bootsma HA, Bootsma MJ, Hecky RE (1996) The chemical composition of precipitation and its significance to the nutrient budget of Lake Malawi. In: Johnson TC, Odada EO (eds) The limnology, climatology and paleoclimatology of the East African Lakes. Gordon and Breach, AmsterdamGoogle Scholar
  2. Bootsma HA, Hecky RE, Johnson TJ, Kling HJ, Mwita J (2003) Inputs, outputs, and internal cycling of silica in a large, tropical lake. J Great Lakes Res 29(Suppl 2):121–138. doi: 10.1016/S0380-1330(03)70543-7 CrossRefGoogle Scholar
  3. Degens ET, Von Herzen RP, Wong H-K, Deuser WG, Jannasch HW (1973) Lake Kivu: structure, chemistry and biology of an East African rift lake. Geol Rundsch 62:245–277. doi: 10.1007/BF01826830 CrossRefGoogle Scholar
  4. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cycles 20:GB4003. doi: 10.1029/2005GB002672 CrossRefGoogle Scholar
  5. Di Figlia MG, Bellanca A, Neri R, Stefansson A (2007) Chemical weathering of volcanic rocks at the Island of Pantelleria, Italy: information from soil profile and soil solution investigations. Chem Geol 246:1–18. doi: 10.1016/j.chemgeo.2007.07.025 CrossRefGoogle Scholar
  6. Gondwe MJ, Guildford SJ, Hecky RE (2008) Planktonic nitrogen fixation in Lake Malawi/Nyasa. Hydrobiologia 596:251–267. doi: 10.1007/s10750-007-9101-6 CrossRefGoogle Scholar
  7. Hamblin PF, Bootsma HA, Hecky RE (2003) Modeling nutrient upwelling in Lake Malawi/Nyasa. J Great Lakes Res 29(Suppl 2):34–47. doi: 10.1016/S0380-1330(03)70537-1 CrossRefGoogle Scholar
  8. Hecky RE, Bootsma HA, Mugidde RM, Bugenyi FWB (1996) Phosphorus pumps, nitrogen sinks, and silicon drains: plumbing nutrients in the African Great Lakes. In: Johnson TC, Odada EO (eds) The limnology, climatology and paleoclimatology of the East African lakes. Gordon and Breach, AmsterdamGoogle Scholar
  9. Hecky RE, Bootsma HA, Kingdon ML (2003) Impact of land use on sediment and nutrient yields to Lake Malawi/Nyasa (Africa). J Great Lakes Res 29(Suppl 2):139–158. doi: 10.1016/S0380-1330(03)70544-9 CrossRefGoogle Scholar
  10. Kneubühler M, Frank T, Kellenberger TW, Pasche N, Schmid M (2007) Mapping chlorophyll-a in Lake Kivu with remote sensing methods. Proceedings of the ‘Envisat Symposium 2007’, Montreux, Switzerland. European Space Agency (Special Publication) ESA SP-636Google Scholar
  11. Langenberg VT, Nyamushahu S, Roijackers R, Koelmans AA (2003) External nutrient sources for Lake Tanganyika. J Great Lakes Res 29(Suppl 2):169–180. doi: 10.1016/S0380-1330(03)70546-2 CrossRefGoogle Scholar
  12. Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem Cycles 22:GB4026. doi: 10.1029/2008GB003240
  13. Moosmann L, Gächter R, Müller B, Wüest A (2006) Is phosphorus retention in autochthonous lake sediments controlled by oxygen or phosphorus? Limnol Oceanogr 51:763–771. doi: 10.4319/lo.2006.51.1_part_2.0763 CrossRefGoogle Scholar
  14. Müller B, Maerki M, Schmid M, Vologina EG, Wehrli B, Wüest A, Sturm M (2005) Internal carbon and nutrient cycling in Lake Baikal: sedimentation, upwelling, and early diagenesis. Glob Planet Change 46:101–124. doi: 10.1016/j.gloplacha.2004.11.008 CrossRefGoogle Scholar
  15. Muvundja FA, Pasche N, Bugenyi FWB, Isumbisho M, Müller B, Namugize JN, Rinta P, Schmid M, Stierli R, Wüest A (2009) Balancing nutrient inputs to Lake Kivu. J Great Lakes Res 35:406–418. doi: 10.1016/j.jglr.2009.06.002 CrossRefGoogle Scholar
  16. Ohlendorf C, Sturm M (2008) A modified method for biogenic silica determination. J Paleolimnol 39:137–142. doi: 10.1007/s10933-007-9100-7 CrossRefGoogle Scholar
  17. Pasche N, Dinkel C, Müller B, Schmid M, Wüest A, Wehrli B (2009) Physical and biogeochemical limits to internal nutrient loading of meromictic Lake Kivu. Limnol Oceanogr 54:1863–1873. doi: 10.4319/lo.2009.54.6.1863 CrossRefGoogle Scholar
  18. Pasche N, Alunga G, Mills K, Muvundja F, Ryves DB, Schurter M, Wehrli B, Schmid M (2010) Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response to recent environmental changes. J Paleolimnol 44:931–946. doi: 10.1007/s10933-010-9465-x CrossRefGoogle Scholar
  19. Pilskaln CH (2004) Seasonal and interannual particle export in an African rift valley lake: a 5-year record from Lake Malawi, southern East Africa. Limnol Oceanogr 49:964–977. doi: 10.4319/lo.2004.49.4.0964 CrossRefGoogle Scholar
  20. Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geoscience 1:430–437. doi: 10.1038/ngeo230 CrossRefGoogle Scholar
  21. Sarmento H, Isumbisho M, Descy J-P (2006) Phytoplankton ecology in Lake Kivu (eastern Africa). J Plankton Res 28:815–829. doi: 10.1093/plankt/fbl017 CrossRefGoogle Scholar
  22. Sarmento H, Isumbisho M, Stenuite S, Darchambeau F, Leporcq B, Descy J-P (2009) Phytoplankton ecology of Lake Kivu (eastern Africa): biomass, production and elemental ratios. Verh Int Verein Limnol 30:709–713Google Scholar
  23. Sarmento H, Leitao M, Stoyneva M, Compère P, Couté A, Isumbisho M, Descy J-P (2007) Species diversity of pelagic algae in Lake Kivu (East Africa). Cryptogamie Algol 28:245–269Google Scholar
  24. Schmid M, Halbwachs M, Wehrli B, Wüest A (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption. Geochem Geophy Geosyst 6:Q07009. doi: 10.1029/2004GC000892 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Eawag: Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
  2. 2.ETH Zurich, Institute of Biogeochemistry and Pollutant DynamicsZürichSwitzerland
  3. 3.Lake Kivu Monitoring Program, Energy and Water Sanitation AuthorityKigaliRwanda
  4. 4.Institut Supérieur PédagogiqueBukavuD.R. Congo

Personalised recommendations