Lake Kivu pp 165-180 | Cite as

Methane Formation and Future Extraction in Lake Kivu

Part of the Aquatic Ecology Series book series (AQEC, volume 5)


This chapter summarises the current knowledge on the vertical distribution of methane (CH4) and its formation in Lake Kivu. Additionally, we review the objectives and restrictions under consideration for sustainable extraction (safe, environmentally acceptable, and economically effective) of the enormous amount of CH4 from the lake. The harvested CH4 will be used to produce electricity which is desperately needed in both neighbouring countries: the Democratic Republic of the Congo and Rwanda.

From a system-analysis point of view, the following processes need to be included as the minimum for adequately evaluating the vertical and temporal development of the lake CH4 during extraction: (1) in situ CH4 formation occurring in the permanently stratified, anoxic deep-water, (2) CH4 oxidation in the oxic surface water, (3) natural lake-water upwelling caused by subaquatic springs, (4) artificial lake-water up- and downwelling due to extraction- and reinjection-related flows, and (5) upward diffusion caused by double diffusive convection and weak turbulence. Water density is parameterised as a function of temperature, salinity, and the two gases carbon dioxide and CH4. For the sake of clarity of the presentation, we use a simplified 4-box analysis and are neglecting the diffusion process (5). This allows for the essence of the CH4 extraction challenge to be conveyed while avoiding excessive complexities.

The system analysis for different CH4 extraction concepts clearly reveals that the depth of reinjection of the CH4-depleted deep-water is critical for the sustainability of the extraction and an optimal CH4 harvesting plan. Here, the suitability of different reinjection scenarios is compared by evaluating each of them in terms of the objectives “safety” (water column stability), “lake ecological integrity” (nutrient upward fluxes), and “economic viability” (amount of harvestable CH4). Comparison of model simulations, run over 50 years, revealed that (1) using lake surface (dilution) water for adjusting the density of the reinjection water and (2) reinjecting the nutrient-rich deep-water in the top 190 m are both unacceptable in terms of sustainability.


Nutrient Flux Density Stratification Upward Flux Methane Extraction Acetoclastic Methanogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Assayag N, Jézéquel D, Ader M, Viollier E, Michard G, Prévot F, Agrinier P (2008) Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): constraints from δ18O of water and δ13C of dissolved inorganic carbon. Appl Geochem 23:2800–2816. doi: 10.1016/j.apgeochem.2008.04.015 CrossRefGoogle Scholar
  2. Borges AV, Abril G, Delille B, Descy J-P, Darchambeau F (2011) Diffusive methane emissions to the atmosphere from Lake Kivu (Eastern Africa). J Geophys Res Biogeosci 116:G03032. doi: 10.1029/2011JG001673 CrossRefGoogle Scholar
  3. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202. doi: 10.1111/j.1574-6941.1999.tb00575.x CrossRefGoogle Scholar
  4. Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, González L, Haffner GD, Mucci A, Sundby B, Fowle DA (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9:61–78. doi: 10.1111/j.1472-4669.2010.00257.x PubMedCrossRefGoogle Scholar
  5. Data Environnement (2003) The exploitation of methane in Lake Kivu – pilot station project. Report by Data Environnement France, 69ppGoogle Scholar
  6. Deuser WG, Degens ET, Harvey GT, Rubin M (1973) Methane in Lake Kivu: new data bearing on its origin. Science 181:51–53. doi: 10.1126/science.181.4094.51 PubMedCrossRefGoogle Scholar
  7. Expert Working Group on Lake Kivu Gas Extraction (2009) Management prescriptions for the development of Lake Kivu gas resources. Report prepared for the Ministry of Infrastructure of the Republic of Rwanda and the Ministry of Hydrocarbons of the Democratic Republic of the Congo, 17 June 2009, 38ppGoogle Scholar
  8. Isumbisho M, Sarmento H, Kaningini B, Micha J-C, Descy J-P (2006) Zooplankton of Lake Kivu, East Africa, half a century after the Tanganyika sardine introduction. J Plankton Res 28:971–989CrossRefGoogle Scholar
  9. Jannasch HW (1975) Methane oxidation in Lake Kivu (central Africa). Limnol Oceanogr 20:860–864CrossRefGoogle Scholar
  10. Jones N (2003) Chock-full of methane, Lake Kivu stores enough energy to power all of Rwanda. New Sci 2384:17Google Scholar
  11. Kling GW, Clark MA, Compton HR, Devine JD, Evans WC, Humphrey AM, Koenigsberg EJ, Lockwood JP, Tuttle ML, Wagner GN (1987) The 1986 Lake Nyos gas disaster in Cameroon, west-Africa. Science 236:169–175. doi: 10.1126/science.236.4798.169 PubMedCrossRefGoogle Scholar
  12. Muvundja FA, Pasche N, Bugenyi FWB, Isumbisho M, Müller B, Namugize J-N, Rinta P, Schmid M, Stierli R, Wüest A (2009) Balancing nutrient inputs to Lake Kivu. J Great Lakes Res 35:406–418. doi: 10.1016/j.jglr.2009.06.002 CrossRefGoogle Scholar
  13. Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745. doi: 10.1016/j.scitotenv.2011.02.001 PubMedCrossRefGoogle Scholar
  14. Pasche N, Dinkel C, Müller B, Schmid M, Wüest A, Wehrli B (2009) Physical and biogeochemical limits to internal nutrient loading of meromictic Lake Kivu. Limnol Oceanogr 54:1863–1873. doi: 10.4319/lo.2009.54.6.1863 CrossRefGoogle Scholar
  15. Pasche N, Alunga G, Mills K, Muvundja FA, Ryves DB, Schurter M, Wehrli B, Schmid M (2010) Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response to recent environmental changes. J Paleolimnol 44:931–946. doi: 10.1007/s10933-010-9465-x CrossRefGoogle Scholar
  16. Pasche N, Schmid M, Vazquez F, Schubert CJ, Wüest A, Kessler JD, Pack MA, Reeburgh WS, Bürgmann H (2011) Methane sources and sinks in Lake Kivu. J Geophys Res Biogeosci 116:G03006. doi: 10.1029/2011JG001690 CrossRefGoogle Scholar
  17. Sarmento H, Isumbisho M, Stenuite S, Darchambeau F, Leporcq B, Descy J-P (2009) Phytoplankton ecology of Lake Kivu (Eastern Africa): biomass, production and elemental ratios. Int Assoc Theor Appl Limnol 30:709–713Google Scholar
  18. Schmid M, Tietze K, Halbwachs M, Lorke A, McGinnis D, Wüest A (2004) How hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assessment in light of the Nyiragongo Volcano eruption of 2002. Acta Vulcanol 14/15:115–121Google Scholar
  19. Schmid M, Halbwachs M, Wehrli B, Wüest A (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption. Geochem Geophys Geosyst 6:Q07009. doi: 10.1029/2004GC000892 CrossRefGoogle Scholar
  20. Schmid M, Busbridge M, Wüest A (2010) Double-diffusive convection in Lake Kivu. Limnol Oceanogr 55:225–238. doi: 10.4319/lo.2010.55.1.0225 CrossRefGoogle Scholar
  21. Schoell M, Tietze K, Schoberth SM (1988) Origin of methane in Lake Kivu (East-Central Africa). Chem Geol 71:257–265. doi: 10.1016/0009-2541(88)90119-2 CrossRefGoogle Scholar
  22. Sigurdsson H, Devine JD, Tchoua FM, Presser TS, Pringle MKW, Evans WC (1987) Origin of the lethal gas burst from Lake Monoun, Cameroun. J Volcanol Geotherm Res 31:1–16. doi: 10.1016/0377-0273(87)90002-3 CrossRefGoogle Scholar
  23. Tietze K (1978) Geophysikalische Untersuchung des Kivusees und seiner ungewöhnlichen Methangaslagerstätte–Schichtung, Dynamik und Gasgehalt des Seewassers. PhD thesis, Christian-Albrechts-Universität Kiel, 150ppGoogle Scholar
  24. Tietze K (1992) Cyclic gas bursts: are they a “usual” feature of Lake Nyos and other gas-bearing Lakes? In: Freeth SJ, Onuoha KM, Ofoegbu CO (eds) Natural hazards in West and Central Africa, Earth Evolution Sciences, International Monograph Series on Interdisciplinary Earth Sciences Research and Application. Vieweg, Brunswick and Wiesbaden, pp 97–107Google Scholar
  25. Tietze K (2007) Basic plan for monitoring, regulating and steering exploitation of the unique methane gas deposit in Lake Kivu: safely, environmentally soundly and with optimal yield. PDT GmbH  −  Physik-Design-Technik  −  Sensorik & Consulting, Celle. Report commissioned by the W  +  S Beteiligungs AG, Dinslaken, prepared for the Ministry of Infrastructure of the Republic of Rwanda, Kigali, 201ppGoogle Scholar
  26. Tietze K, Geyh M, Müller H, Schröder L, Stahl W, Wehner H (1980) The genesis of methane in Lake Kivu (Central Africa). Geol Rundsch 69:452–472CrossRefGoogle Scholar
  27. Vagle S, Hume J, McLaughlin F, MacIsaac E, Shortreed K (2010) A methane bubble curtain in meromictic Sakinaw Lake, British Columbia. Limnol Oceanogr 55:1313–1326. doi: 10.4319/lo.2010.55.3.1313 CrossRefGoogle Scholar
  28. Wand U, Samarkin VA, Nitzsche H-M, Hubberten H-W (2006) Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica. Limnol Oceanogr 51:1180–1194. doi: 10.4319/lo.2006.51.2.1180 CrossRefGoogle Scholar
  29. Wüest A, Jarc L, Schmid M (2009) Modelling the reinjection of deep-water after methane extraction in Lake Kivu, Eawag and BTC for the Governments of Rwanda and the Democratic Republic of the Congo, Kastanienbaum Switzerland, 141pp,

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Eawag: Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
  2. 2.ETH Zurich, Institute of Biogeochemistry and Pollutant DynamicsZurichSwitzerland
  3. 3.Lake Kivu Monitoring ProgramEnergy and Water Sanitation AuthorityKigaliRwanda

Personalised recommendations