Skip to main content

Midkine Is a Potential Therapeutic Target of Hepatocellular Carcinoma

  • Chapter
  • First Online:
Book cover Midkine: From Embryogenesis to Pathogenesis and Therapy
  • 428 Accesses

Abstract

Midkine (MK), a heparin-binding growth factor, has been demonstrated frequently and highly expressed in a variety of human carcinomas, including hepatocellular carcinoma (HCC). There is mounting evidence indicating that MK plays a significant role in carcinogenesis-related activities, such as proliferation, migration, anti-apoptosis, mitogenesis, transformation, and angiogenesis. Futhermore, siRNA, anti-sense oligonucleotides or antibody to MK has yielded great effects in anti-prolierative activities to HCC cells. Therefore, MK appears to be a potential molecular target for therapy of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Llovet J, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917

    Article  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  3. El-Serag HB, Marrero JA, Rudolph L et al (2008) Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134:1752–1763

    Article  PubMed  Google Scholar 

  4. Chung HW, Wen Y, Choi EA et al (2002) Pleiotrophin (PTN) and midkine (MK) mRNA expression in eutopic and ectopic endometrium in advanced stage endometriosis. Mol Hum Reprod 8:350–355

    Article  PubMed  CAS  Google Scholar 

  5. Ezquerra L, Alguacil LF, Nguyen T et al (2008) Different pattern of pleiotrophin and midkine expression in neuropathic pain: correlation between changes in pleiotrophin gene expression and rat strain differences in neuropathic pain. Growth Factors 26:44–48

    Article  PubMed  CAS  Google Scholar 

  6. Mitsiadis TA, Salmivirta M, Muramatsu T et al (1995) Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 121:37–51

    PubMed  CAS  Google Scholar 

  7. Miyashiro M, Kadomatsu K, Ogata N et al (1998) Midkine expression in transient retinal ischemia in the rat. Curr Eye Res 17:9–13

    Article  PubMed  CAS  Google Scholar 

  8. Fujita S, Seki S, Fujiwara M et al (2008) Midkine expression correlating with growth activity and tooth morphogenesis in odontogenic tumors. Hum Pathol 39:694–700

    Article  PubMed  CAS  Google Scholar 

  9. Nakamoto M, Matsubara S, Miyauchi T et al (1992) A new family of heparin binding growth/differentiation factors: differential expression of the midkine (MK) and HB-GAM genes during mouse development. J Biochem 112:346–349

    PubMed  CAS  Google Scholar 

  10. Obama H, Biro S, Tashiro T et al (1998) Myocardial infarction induces expression of midkine, a heparin-binding growth factor with reparative activity. Anticancer Res 18:145–152

    PubMed  CAS  Google Scholar 

  11. Obama H, Tsutsui J, Ozawa M et al (1995) Midkine (MK) expression in extraembryonic tissues, amniotic fluid, and cerebrospinal fluid during mouse embryogenesis. J Biochem 118:88–93

    PubMed  CAS  Google Scholar 

  12. Dai LC, Wang X, Yao X et al (2007) Antisense oligonucleotide targeting midkine suppresses in vivo angiogenesis. World J Gastroenterol 13:1208–1213

    PubMed  CAS  Google Scholar 

  13. Dai LC, Wang X, Yao X et al (2006) Antisense oligonucleotides targeting midkine induced apoptosis and increased chemosensitivity in hepatocellular carcinoma cells. Acta Pharmacol Sin 27:1630–1636

    Article  PubMed  CAS  Google Scholar 

  14. Tsutsui J, Kadomatsu K, Matsubara S (1993) A new family of heparin-binding growth/differentiation factors: increased midkine expression in Wilms’ tumor and other human carcinomas. Cancer Res 53:1281–1285

    PubMed  CAS  Google Scholar 

  15. Nakagawara A, Milbrandt J, Muramatsu T et al (1995) Differential expression of pleiotrophin and midkine in advanced neuroblastomas. Cancer Res 55:1792–1797

    PubMed  CAS  Google Scholar 

  16. Kato M, Shinozawa T, Kato S et al (2000) Increased midkine expression in hepatocellular carcinoma. Arch Pathol Lab Med 124:848–852

    PubMed  CAS  Google Scholar 

  17. Tomizawa M, Yu L, Wada A et al (2003) A promoter region of the midkine gene that is frequently expressed in human hepatocellular carcinoma can activate a suicide gene as effectively as the alpha-fetoprotein promoter. Br J Cancer 89:1086–1090

    Article  PubMed  CAS  Google Scholar 

  18. Aridome K, Tsutsui J, Takao S et al (1995) Increased midkine gene expression in human gastrointestinal cancers. Jpn J Cancer Res 86:655–661

    Article  PubMed  CAS  Google Scholar 

  19. Ikematsu S, Yano A, Aridome K et al (2000) Serum midkine levels are increased in patients with various types of carcinomas. Br J Cancer 83:701–706

    Article  PubMed  CAS  Google Scholar 

  20. Muramatsu H, Song XJ, Koide N et al (1996) Enzyme-linked immunoassay for midkine, and its application to evaluation of midkine levels in developing mouse brain and sera from patients with hepatocellular carcinomas. J Biochem 119:1171–1175

    Article  PubMed  CAS  Google Scholar 

  21. Zhang C, Li Z, Cheng Y et al (2007) CpG island methylator phenotype association with elevated serum alpha-fetoprotein level in hepatocellular carcinoma. Clin Cancer Res 13:944–952

    Article  PubMed  CAS  Google Scholar 

  22. Shibata Y, Muramatsu T, Hirai M et al (2002) Nuclear targeting by the growth factor midkine. Mol Cell Biol 22:6788–6796

    Article  PubMed  CAS  Google Scholar 

  23. Salama RH, Muramatsu H, Zou K et al (2001) Midkine binds to 37-kDa laminin binding protein precursor, leading to nuclear transport of the complex. Exp Cell Res 270:13–20

    Article  PubMed  CAS  Google Scholar 

  24. Jans DA, Xiao CY, Lam MH (2000) Nuclear targeting signal recognition: a key control point in nuclear transport. Bioessays 22:532–544

    Article  PubMed  CAS  Google Scholar 

  25. Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    Article  PubMed  CAS  Google Scholar 

  26. Dai LC, Shao JZ, Min LS et al (2008) Midkine accumulated in nucleolus of HepG2 cells involved in rRNA transcription. World J Gastroenterol 14:6249–6253

    Article  PubMed  CAS  Google Scholar 

  27. Dai L, Xu D, Yao X et al (2005) Conformational determinants of the intracellular localization of midkine. Biochem Biophys Res Commun 330:310–317

    Article  PubMed  CAS  Google Scholar 

  28. Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318

    Article  PubMed  CAS  Google Scholar 

  29. Kojima S, Muramatsu H, Amanuma H et al (1995) Midkine enhances fibrinolytic activity of bovine endothelial cells. J Biol Chem 270:9590–9596

    Article  PubMed  CAS  Google Scholar 

  30. Kadomatsu K, Hagihara M, Akhter S et al (1997) Midkine induces the transformation of NIH3T3 cells. Br J Cancer 75:354–359

    Article  PubMed  CAS  Google Scholar 

  31. Maeda N, Noda M (1998) Involvement of receptor-like protein tyrosine phosphatase zeta/RPTPbeta and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J Cell Biol 142:203–216

    Article  PubMed  CAS  Google Scholar 

  32. Qi M, Ikematsu S, Ichihara-Tanaka K et al (2001) Haptotactic migration induced by midkine. Involvement of protein-tyrosine phosphatase zeta. Mitogen-activated protein kinase, and phosphatidylinositol 3-kinase. J Biol Chem 276:15868–15875

    PubMed  CAS  Google Scholar 

  33. Ohhashi S, Ohuchida K, Mizumoto K et al (2009) Midkine mRNA is overexpressed in pancreatic cancer. Dig Dis Sci 54:811–815

    Article  PubMed  CAS  Google Scholar 

  34. Ohuchida T, Okamoto K, Akahane K et al (2004) Midkine protects hepatocellular carcinoma cells against TRAIL-mediated apoptosis through down-regulation of caspase-3 activity. Cancer 100:2430–2436

    Article  PubMed  CAS  Google Scholar 

  35. Mirkin BL, Clark S, Zheng X et al (2005) Identification of midkine as a mediator for intercellular transfer of drug resistance. Oncogene 24:4965–4974

    Article  PubMed  CAS  Google Scholar 

  36. Shin S, Sung BJ, Cho YS et al (2001) An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 40:1117–1123

    Article  PubMed  CAS  Google Scholar 

  37. Yin C, Knudson CM, Korsmeyer SJ et al (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385:637–640

    Article  PubMed  CAS  Google Scholar 

  38. Muramatsu H, Shirahama H, Yonezawa S et al (1993) Midkine, a retinoic acid-inducible growth/differentiation factor: immunochemical evidence for the function and distribution. Dev Biol 159:392–402

    Article  PubMed  CAS  Google Scholar 

  39. Inoh K, Muramatsu H, Torii S et al (2006) Doxorubicin-conjugated anti-midkine monoclonal antibody as a potential anti-tumor drug. Jpn J Clin Oncol 36:207–211

    Article  PubMed  Google Scholar 

  40. Maeda T, O-Wang J, Matsubara H et al (2001) A minimum c-erbB-2 promoter-mediated expression of herpes simplex virus thymidine kinase gene confers selective cytotoxicity of human breast cancer cells to ganciclovir. Cancer Gene Ther 8:890–896

    Article  PubMed  CAS  Google Scholar 

  41. Mawatari F, Tsuruta S, Ido A et al (1998) Retrovirus-mediated gene therapy for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by human alpha-fetoprotein enhancer directly linked to its promoter. Cancer Gene Ther 5:301–306

    PubMed  CAS  Google Scholar 

  42. Alemany R, Balague C, Curiel DT (2000) Replicative adenoviruses for cancer therapy. Nat Biotechnol 18:723–727

    Article  PubMed  CAS  Google Scholar 

  43. Terao S, Shirakawa T, Kubo S et al (2007) Midkine promoter-based conditionally replicative adenovirus for targeting midkine-expressing human bladder cancer model. Urology 70:1009–1013

    Article  PubMed  Google Scholar 

  44. Yu L, Hamada K, Namba M et al (2004) Midkine promoter-driven suicide gene expression and -mediated adenovirus replication produced cytotoxic effects to immortalised and tumour cells. Eur J Cancer 40:1787–1794

    Article  PubMed  CAS  Google Scholar 

  45. Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Article  PubMed  CAS  Google Scholar 

  46. Dai LC, Wang X, Yao X et al (2007) Enhanced therapeutic effects of combined chemotherapeutic drugs and midkine antisense oligonucleotides for hepatocellular carcinoma. World J Gastroenterol 13:1989–1994

    PubMed  CAS  Google Scholar 

  47. Dai LC, Wang X, Yao X et al (2007) Antisense oligonucleotides targeting midkine inhibit tumor growth in an in situ human hepatocellular carcinoma model. Acta Pharmacol Sin 28:453–458

    Article  PubMed  CAS  Google Scholar 

  48. Koide N, Hada H, Shinji T et al (1999) Expression of the midkine gene in human hepatocellular carcinomas. Hepatogastroenterology 46:3189–3196

    PubMed  CAS  Google Scholar 

  49. Takei Y, Kadomatsu K, Goto T et al (2006) Combinational antitumor effect of siRNA against midkine and paclitaxel on growth of human prostate cancer xenografts. Cancer 107:864–873

    Article  PubMed  CAS  Google Scholar 

  50. Dai LC, Yao X, Wang X et al (2009) In vitro and in vivo suppression of hepatocellular carcinoma growth by midkine-antisense oligonucleotide-loaded nanoparticles. World J Gastroenterol 15:1966–1972

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Cheng Dai .

Editor information

Editors and Affiliations

Additional information

Funding: This work was financially supported by Key New Drug Discovery Project of 11th Five-Years Plan ( 2009ZX09103-680), the Ministry of Science and Technology of the People’s Republic of China.

Conflict of interest: We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dai, L.C., Yao, X., Zhong, J. (2012). Midkine Is a Potential Therapeutic Target of Hepatocellular Carcinoma. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_24

Download citation

Publish with us

Policies and ethics