Skip to main content

Midkine as a Tumor-Shared Antigen

  • Chapter
  • First Online:
  • 392 Accesses

Abstract

Midkine (MK) is known to be overexpressed in various human malignant tumors, although its expression is low or undetectable in normal adult tissues. Its detection in the tumors or in the blood has been associated with poor disease outcome while its blockade was found to contribute to tumor regression. Recent investigations on the immunogenic properties of MK have showed that it contains appropriate sequences to stimulate specific CD8 and CD4 T lymphocytes. CD8 T cells were identified in humans by in vitro amplification or in transgenic mice by immunization. They were cytotoxic and recognized MK-expressing tumors. CD4 T cells specific for MK appear to recognize it in association with multiple HLA class II molecules. In light of these observations, MK provides an innovative opportunity to design specific vaccines that target many tumors. In addition, considering the multiple functions and the wide expression of MK, these vaccines would exhibit multiple advantages that are discussed in this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. van der Bruggen P, Traversari C, Chomez P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    Article  PubMed  Google Scholar 

  2. Boon T, Coulie PG, Van den Eynde B (1997) Tumor antigens recognized by T cells. Immunol Today 18:267–268

    Article  PubMed  CAS  Google Scholar 

  3. Boon T, Coulie PG, Van den Eynde BJ et al (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208

    Article  PubMed  CAS  Google Scholar 

  4. van Endert PM (1999) Genes regulating MHC class I processing of antigen. Curr Opin Immunol 11:82–88

    Article  PubMed  Google Scholar 

  5. Watts C (2001) Antigen processing in the endocytic compartment. Curr Opin Immunol 13:26–31

    Article  PubMed  CAS  Google Scholar 

  6. Strawbridge AB, Blum JS (2007) Autophagy in MHC class II antigen processing. Curr Opin Immunol 19:87–92

    Article  PubMed  CAS  Google Scholar 

  7. Palucka K, Ueno H, Zurawski G et al (2010) Building on dendritic cell subsets to improve cancer vaccines. Curr Opin Immunol 22:258–263

    Article  PubMed  CAS  Google Scholar 

  8. Ossendorp F, Mengede E, Camps M et al (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187:693–702

    Article  PubMed  CAS  Google Scholar 

  9. Wang HY, Lee DA, Peng G et al (2004) Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20:107–118

    Article  PubMed  CAS  Google Scholar 

  10. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4  +  CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  11. Fourcade J, Sun Z, Kudela P et al (2010) Human tumor antigen-specific helper and regulatory T cells share common epitope specificity but exhibit distinct T cell repertoire. J Immunol 184:6709–6718

    Article  PubMed  CAS  Google Scholar 

  12. Zarour HM, Maillere B, Brusic V et al (2002) NY-ESO-1 119–143 is a promiscuous major histocompatibility complex class II T-helper epitope recognized by Th1- and Th2-type tumor-reactive CD4+ T cells. Cancer Res 62:213–218

    PubMed  CAS  Google Scholar 

  13. Topalian SL, Rivoltini L, Mancini M et al (1994) Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci USA 91:9461–9465

    Article  PubMed  CAS  Google Scholar 

  14. Houbiers JG, Nijman HW, van der Burg SH et al (1993) In vitro induction of human cytotoxic T lymphocyte responses against peptides of mutant and wild-type p53. Eur J Immunol 23:2072–2077

    Article  PubMed  CAS  Google Scholar 

  15. Vonderheide RH, Hahn WC, Schultze JL et al (1999) The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10:673–679

    Article  PubMed  CAS  Google Scholar 

  16. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  PubMed  CAS  Google Scholar 

  17. Kondo E, Maecker B, Weihrauch MR et al (2008) Cyclin D1-specific cytotoxic T lymphocytes are present in the repertoire of cancer patients: implications for cancer immunotherapy. Clin Cancer Res 14:6574–6579

    Article  PubMed  CAS  Google Scholar 

  18. Wang M, Johansen B, Nissen MH et al (2007) Identification of an HLA-A*0201 restricted Bcl2-derived epitope expressed on tumors. Cancer Lett 251:86–95

    Article  PubMed  CAS  Google Scholar 

  19. Andersen MH, Reker S, Kvistborg P et al (2005) Spontaneous immunity against Bcl-xL in cancer patients. J Immunol 175:2709–2714

    PubMed  CAS  Google Scholar 

  20. O’Brien T, Cranston D, Fuggle S et al (1996) The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers. Cancer Res 56:2515–2518

    PubMed  Google Scholar 

  21. Gustavsson H, Jennbacken K, Welen K et al (2008) Altered expression of genes regulating angiogenesis in experimental androgen-independent prostate cancer. Prostate 68:161–170

    Article  PubMed  CAS  Google Scholar 

  22. Garver RI Jr, Radford DM, Donis-Keller H et al (1994) Midkine and pleiotrophin expression in normal and malignant breast tissue. Cancer 74:1584–1590

    Article  PubMed  Google Scholar 

  23. Garver RI Jr, Chan CS, Milner PG (1993) Reciprocal expression of pleiotrophin and midkine in normal versus malignant lung tissues. Am J Respir Cell Mol Biol 9:463–466

    PubMed  CAS  Google Scholar 

  24. Koide N, Hada H, Shinji T et al (1999) Expression of the midkine gene in human hepatocellular carcinomas. Hepatogastroenterology 46:3189–3196

    PubMed  CAS  Google Scholar 

  25. Ye C, Qi M, Fan QW et al (1999) Expression of midkine in the early stage of carcinogenesis in human colorectal cancer. Br J Cancer 79:179–184

    Article  PubMed  CAS  Google Scholar 

  26. Velculescu VE, Madden SL, Zhang L et al (1999) Analysis of human transcriptomes. Nat Genet 23:387–388

    Article  PubMed  CAS  Google Scholar 

  27. Kerzerho J, Adotevi O, Castelli FA et al (2010) The angiogenic growth factor and biomarker midkine is a tumor-shared antigen. J Immunol 185:418–423

    Article  PubMed  CAS  Google Scholar 

  28. Rammensee HG, Friede T, Stevanoviic S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41:178–228

    Article  PubMed  CAS  Google Scholar 

  29. Gueguen M, Biddison WE, Long EO (1994) T cell recognition of an HLA-A2-restricted epitope derived from a cleaved signal sequence. J Exp Med 180:1989–1994

    Article  PubMed  CAS  Google Scholar 

  30. Wolfel C, Drexler I, Van Pel A et al (2000) Transporter (TAP)- and proteasome-independent presentation of a melanoma-associated tyrosinase epitope. Int J Cancer 88:432–438

    Article  PubMed  CAS  Google Scholar 

  31. Mitchell MS, Lund TA, Sewell AK et al (2007) The cytotoxic T cell response to peptide analogs of the HLA-A*0201-restricted MUC1 signal sequence epitope, M1.2. Cancer Immunol Immunother 56:287–301

    Article  PubMed  CAS  Google Scholar 

  32. Wei ML, Cresswell P (1992) HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356:443–446

    Article  PubMed  CAS  Google Scholar 

  33. El Hage F, Stroobant V, Vergnon I et al (2008) Preprocalcitonin signal peptide generates a cytotoxic T lymphocyte-defined tumor epitope processed by a proteasome-independent pathway. Proc Natl Acad Sci USA 105:10119–10124

    Article  PubMed  CAS  Google Scholar 

  34. Shaffer KL, Sharma A, Snapp EL et al (2005) Regulation of protein compartmentalization expands the diversity of protein function. Dev Cell 9:545–554

    Article  PubMed  CAS  Google Scholar 

  35. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834–840

    Article  PubMed  CAS  Google Scholar 

  36. Godefroy E, Moreau-Aubry A, Diez E et al (2005) alpha v beta3-dependent cross-presentation of matrix metalloproteinase-2 by melanoma cells gives rise to a new tumor antigen. J Exp Med 202:61–72

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki N, Shibata Y, Urano T et al (2004) Proteasomal degradation of the nuclear targeting growth factor midkine. J Biol Chem 279:17785–17791

    Article  PubMed  CAS  Google Scholar 

  38. Kovjazin R, Volovitz I, Kundel Y et al (2011) ImMucin: a novel therapeutic vaccine with promiscuous MHC binding for the treatment of MUC1-expressing tumors. Vaccine 29:4676–4686

    Article  PubMed  CAS  Google Scholar 

  39. Kadomatsu K, Hagihara M, Akhter S et al (1997) Midkine induces the transformation of NIH3T3 cells. Br J Cancer 75:354–359

    Article  PubMed  CAS  Google Scholar 

  40. Choudhuri R, Zhang HT, Donnini S et al (1997) An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis. Cancer Res 57:1814–1819

    PubMed  CAS  Google Scholar 

  41. Takei Y, Kadomatsu K, Matsuo S et al (2001) Antisense oligodeoxynucleotide targeted to Midkine, a heparin-binding growth factor, suppresses tumorigenicity of mouse rectal carcinoma cells. Cancer Res 61:8486–8491

    PubMed  CAS  Google Scholar 

  42. Maehara H, Kaname T, Yanagi K et al (2007) Midkine as a novel target for antibody therapy in osteosarcoma. Biochem Biophys Res Commun 358:757–762

    Article  PubMed  CAS  Google Scholar 

  43. Tartour E, Pere H, Maillere B et al (2011) Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30:83–95

    Article  PubMed  CAS  Google Scholar 

  44. Slager EH, Honders MW, van der Meijden ED et al (2006) Identification of the angiogenic endothelial-cell growth factor-1/thymidine phosphorylase as a potential target for immunotherapy of cancer. Blood 107:4954–4960

    Article  PubMed  CAS  Google Scholar 

  45. Miyazawa M, Ohsawa R, Tsunoda T et al (2010) Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci 101:433–439

    Article  PubMed  CAS  Google Scholar 

  46. Wood LM, Pan ZK, Guirnalda P et al (2011) Targeting tumor vasculature with novel Listeria-based vaccines directed against CD105. Cancer Immunol Immunother 60:931–942

    Article  PubMed  CAS  Google Scholar 

  47. Kang HC, Kim IJ, Park JH et al (2004) Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays. Clin Cancer Res 10:272–284

    Article  PubMed  CAS  Google Scholar 

  48. Wang J, Takeuchi H, Sonobe Y et al (2008) Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population. Proc Natl Acad Sci USA 105:3915–3920

    Article  PubMed  CAS  Google Scholar 

  49. Kubo T, Hatton RD, Oliver J et al (2004) Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells. J Immunol 173:7249–7258

    PubMed  CAS  Google Scholar 

  50. Konishi N, Nakamura M, Nakaoka S et al (1999) Immunohistochemical analysis of midkine expression in human prostate carcinoma. Oncology 57:253–257

    Article  PubMed  CAS  Google Scholar 

  51. Sato W, Kadomatsu K, Yuzawa Y et al (2001) Midkine is involved in neutrophil infiltration into the tubulointerstitium in ischemic renal injury. J Immunol 167:3463–3469

    PubMed  CAS  Google Scholar 

  52. Maruyama K, Muramatsu H, Ishiguro N et al (2004) Midkine, a heparin-binding growth factor, is fundamentally involved in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 50:1420–1429

    Article  PubMed  CAS  Google Scholar 

  53. Zou P, Muramatsu H, Sone M et al (2006) Mice doubly deficient in the midkine and pleiotrophin genes exhibit deficits in the expression of beta-tectorin gene and in auditory response. Lab Invest 86:645–653

    Article  PubMed  CAS  Google Scholar 

  54. Muramatsu T (2010) Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Ser B Phys Biol Sci 86:410–425

    Article  PubMed  CAS  Google Scholar 

  55. Muramatsu H, Song XJ, Koide N et al (1996) Enzyme-linked immunoassay for midkine, and its application to evaluation of midkine levels in developing mouse brain and sera from patients with hepatocellular carcinomas. J Biochem 119:1171–1175

    Article  PubMed  CAS  Google Scholar 

  56. Ikematsu S, Okamoto K, Yoshida Y et al (2003) High levels of urinary midkine in various cancer patients. Biochem Biophys Res Commun 306:329–332

    Article  PubMed  CAS  Google Scholar 

  57. Ikematsu S, Yano A, Aridome K et al (2000) Serum midkine levels are increased in patients with various types of carcinomas. Br J Cancer 83:701–706

    Article  PubMed  CAS  Google Scholar 

  58. Shimada H, Nabeya Y, Tagawa M et al (2003) Preoperative serum midkine concentration is a prognostic marker for esophageal squamous cell carcinoma. Cancer Sci 94:628–632

    Article  PubMed  CAS  Google Scholar 

  59. Obata Y, Kikuchi S, Lin Y et al (2005) Serum midkine concentrations and gastric cancer. Cancer Sci 96:54–56

    Article  PubMed  CAS  Google Scholar 

  60. Ikematsu S, Nakagawara A, Nakamura Y et al (2008) Plasma midkine level is a prognostic factor for human neuroblastoma. Cancer Sci 99:2070–2074

    Article  PubMed  CAS  Google Scholar 

  61. Kadomatsu K, Tomomura M, Muramatsu T (1988) cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun 151:1312–1318

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Maillère .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kerzerho, J., Castelli, F.A., Maillère, B. (2012). Midkine as a Tumor-Shared Antigen. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_22

Download citation

Publish with us

Policies and ethics