Facile Green Biofabrication of Nanocrystallites

  • Anil K. SureshEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


To facilitate widespread applications of engineered nanoparticles, researchers are looking at novel and better synthesis strategies. This brief chapter details the biofabrication/biosynthesis of nanoparticles, advantages of biofabrication over conventional chemical or physical routes of synthesis, and the mechanism involved in biofabrication. An illustration on the biosynthesis of silver nanoparticles using the metal-reducing bacterium S. oneidensis will be presented as an example. Further, details on the synthesis methodology, physical characterizations with respect to morphology, crystallinity, surface properties, and size and shape distributions, which will be based on characterization techniques involving UV–Vis and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy, and atomic force microscopy measurements will be discussed.


Biofabrication Nanocrystallites Microbial Mechanism 


  1. 1.
    Wei G, Wang L, Liu ZG, Song YH, Sun LL, Yang T, Li ZA (2005) DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering. J Phys Chem B 109(50):23941–23947CrossRefGoogle Scholar
  2. 2.
    Kumar SA, Khan MI (2010) Heterofunctional nanomaterials: fabrication, properties and applications in nanobiotechnology. J Nanosci Nanotechnol 10(7):4124–4134CrossRefGoogle Scholar
  3. 3.
    Kim JH, Lee TR (2004) Thermo- and pH-responsive hydrogel-coated gold nanoparticles. Chem Mater 16(19):3647–3651CrossRefGoogle Scholar
  4. 4.
    Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem Mater 12(1):202–205CrossRefGoogle Scholar
  5. 5.
    Sun SH, Anders S, Thomson T, Baglin JEE, Toney MF, Hamann HF, Murray CB, Terris BD (2003) Controlled synthesis and assembly of FePt nanoparticles. J Phys Chem B 107(23):5419–5425CrossRefGoogle Scholar
  6. 6.
    Galloway JM, Arakaki A, Masuda F, Tanaka T, Matsunaga T, Staniland SS (2011) Magnetic bacterial protein Mms6 controls morphology, crystallinity and magnetism of cobalt-doped magnetite nanoparticles in vitro. J Mater Chem 21(39):15244–15254CrossRefGoogle Scholar
  7. 7.
    Kisailus D, Truong Q, Amemiya Y, Weaver JC, Morse DE (2006) Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc Natl Acad Sci U S A 103(15):5652–5657CrossRefGoogle Scholar
  8. 8.
    Kisailus D, Choi JH, Weaver JC, Yang WJ, Morse DE (2005) Enzymatic synthesis and nanostructural control of gallium oxide at low temperature. Adv Mater 17(3):314–318Google Scholar
  9. 9.
    Brutchey RL, Yoo ES, Morse DE (2006) Biocatalytic synthesis of a nanostructured and crystalline bimetallic perovskite-like barium oxofluorotitanate at low temperature. J Am Chem Soc 128(31):10288–10294CrossRefGoogle Scholar
  10. 10.
    Singh AV, Bandgar BM, Kasture M, Prasad BLV, Sastry M (2005) Synthesis of gold, silver and their alloy nanoparticles using bovine serum albumin as foaming and stabilizing agent. J Mater Chem 15(48):5115–5121CrossRefGoogle Scholar
  11. 11.
    Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15:269–272CrossRefGoogle Scholar
  12. 12.
    Kim J, Rheem Y, Yoo B, Chong Y, Bozhilov KN, Kim D, Sadowsky MJ, Hur H-G, Myung NV (2010) Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater 6(7):2681–2689CrossRefGoogle Scholar
  13. 13.
    Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Ahmad A, Khan MI (2007) Sulfite reductase-mediated synthesis of gold nanoparticles capped with phytochelatin. Biotechnol Appl Biochem 47:191–195CrossRefGoogle Scholar
  14. 14.
    Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445CrossRefGoogle Scholar
  15. 15.
    Ansary AA, Kumar SA, Krishnasastry MV, Abyaneh MK, Kulkarni SK, Ahmad A, Khan MI (2007) CdS quantum dots: enzyme mediated in vitro synthesis, characterization and conjugation with plant lectins. J Biomed Nanotechnol 3(4):406–413CrossRefGoogle Scholar
  16. 16.
    Liu F, Kang SH, Lee Y-I, Choa Y-h, Mulchandani A, Myung NV, Chen W (2010) Enzyme mediated synthesis of phytochelatin-capped CdS nanocrystals. Appl Phys Lett 97(12):123703Google Scholar
  17. 17.
    Slocik JM, Naik RR (2007) Biological assembly of hybrid inorganic nanomaterials. Curr Nanosci 3(2):117–120CrossRefGoogle Scholar
  18. 18.
    Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal-growth of bacterial magnetite. Nature 310(5976):405–407CrossRefGoogle Scholar
  19. 19.
    Suresh AK, Pelletier DA, Wang W, Broich ML, Moon J-W, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7:2148–2152CrossRefGoogle Scholar
  20. 20.
    Suresh AK, Pelletier DA, Wang W, Moon J-W, Gu B, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2010) Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria. Environ Sci Technol 44(13):5210–5215CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Molecular MedicineBeckman Research Institute, City of HopeDuarteUSA

Personalised recommendations