Skip to main content

Chordoma: Role of CAM5.2

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 8

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 8))

  • 1425 Accesses

Abstract

Chordoma is a relatively rare malignant bone tumor that is considered to arise in the remnant of the embryonic notochord. Chordoma retains both epithelial and mesenchymal characters. Anti-Cytokeratin, CAM5.2 that mainly reacts with Moll’s peptide #8 has been most often used for researches in cell differentiation or in clinicopathology. Since 1980s, immunohistochemical analysis of the expression of cytokeratins including CAM5.2 has been considered useful for discriminating chordoma from chondrosarcoma because the two tumors resemble each other in both radiologic and histologic findings. In contrast to chondrosarcoma, which shows completely negative immunoreactivity for cytokeratins, chordoma exhibits positive cytokeratin expression. However, immunoreactivity for CAM5.2 varies from case to case in contrast to pancytokeratin which is usually strongly expressed in entire lesions of chordoma. In addition, clinicopathologic significance of CAM5.2 expression is unknown in chordoma. Previous reports indicated the correlation of CAM5.2 expression with several clinicopathological parameters and a significance of CAM5.2 expression in the biology of chordoma. This review offers an overview of the role of CAM5.2 expression in chordoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abenoza P, Sibley RK (1986) Chordoma: an immunohistologic study. Hum Pathol 17:744–747

    Article  PubMed  CAS  Google Scholar 

  • Coindre JM, Rivel J, Trojani M, Mascarel I, Mascarel A (1986) Immunohistological study in chordomas. J Pathol 50:61–63

    Article  Google Scholar 

  • Cooper C, Park M, Blair D, Tainsky M, Huebner K, Croce C (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311:29–33

    Article  PubMed  CAS  Google Scholar 

  • Debernardi L (1913) Cordoma sacromatoso del sacro contributo all conoscanza istologica e clinica dei tumori di origine cordale. Arch Sci Med 37:404–456

    Google Scholar 

  • Di Renzo MF, Narsimhan RP, Oliviero M, Bretti S, Giordano S, Medico E, Gaglia P, Zara P, Comoglio PM (1991) Expression of the Met/HGF receptor in normal and neoplastic human tissue. Oncogene 6:1997–2003

    PubMed  Google Scholar 

  • Grigioni W, Fiorentino M, D’Errico A, Ponzetto A, Crepaldi T, Prat M (1995) Overexpression of c-met protooncogene product and raised Ki67 index in hepatocellular carcinomas with respect to benign liver conditions. Hepatology 21:1543–1546

    PubMed  CAS  Google Scholar 

  • Hecht M, Papoutsi M, Tran HD, Wilting J, Schweigerer L (2004) Hepatocyte growth factor/c-MET signaling promotes the progression of experimental human neuroblastomas. Cancer Res 64:6109–6118

    Article  PubMed  CAS  Google Scholar 

  • Heffelfinger MJ, Dahlin DC, MacCarty CS, Beabout JW (1973) Chordomas and cartilaginous tumors at the skull base. Cancer 32:410–420

    Article  PubMed  CAS  Google Scholar 

  • Imai R, Kamada T, Tsuji H, Sugawara S, Serizawa I, Tsujii H, Tatezaki SI, Working Group for Bone and Soft Tissue Sarcomas (2010) Effect of carbon ion radiotherapy for sacral chordoma: results of phase I-II and phase II clinical trials. Int J Radiat Oncol Biol Phys 77(5):1470–1476

    Article  PubMed  Google Scholar 

  • Kumaki F, Matsui K, Kawai T, Ozeki Y, Yu ZX, Ferrans VJ, Travis WD (2001) Expression of matrix metalloproteinases in invasive pulmonary adenocarcinoma with bronchioloalveolar component and atypical adenomatous hyperplasia. Am J Pathol 159:2125–2135

    Article  PubMed  CAS  Google Scholar 

  • Listrom MB, Dalton LW (1987) Comparison of keratin monoclonal antibodies MAK-6, AE1/AE3, and CAM5.2. Am J Surg Pathol 11:516–525

    Article  Google Scholar 

  • Meis JM, Raymond AK, Evans HL, Charles RE, Giraldo AA (1987) “Dedifferentiated” chordoma: a clinicopathologic and immunohistochemical study of three cases. Am J Surg Pathol 11:516–525

    Article  PubMed  CAS  Google Scholar 

  • Michalopoulos GK (1990) Liver regeneration: molecular mechanisms of growth control. FASEB J 4:176–187

    PubMed  CAS  Google Scholar 

  • Moll R, Franke W, Schiller D, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors, and cultured cells. Cell 31:11–24

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Matsumono K, Nakamura T, Orci L (1991) Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67:901–908

    Article  PubMed  CAS  Google Scholar 

  • Naka T, Iwamoto Y, Shinohara N, Chuman H, Fukui M, Tsuneyoshi M (1997a) Cytokeratin subtyping in chordomas and the fetal notochord: an immunohistochemical analysis of aberrant expression. Mod Pathol 10:545–551

    PubMed  CAS  Google Scholar 

  • Naka T, Iwamoto Y, Shinohara N, Ushijima M, Chuman H, Tsuneyoshi M (1997b) Expression of c-met proto-oncogene product (c-MET) in benign and malignant bone tumors. Mod Pathol 10:832–838

    PubMed  CAS  Google Scholar 

  • Naka T, Boltze C, Kuester D, Schulz T-O, Samii A, Herold C, Ostertag H, Roessner A (2004) Expression of matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, cathepsin B, and urokinase plasminogen activator in non-skull base chordoma. Am J Clin Pathol 122:926–930

    Article  PubMed  CAS  Google Scholar 

  • Naka T, Boltze C, Kuester D, Samii A, Herold C, Ostertag H, Iwamoto Y, Oda Y, Tsuneyoshi M, Roessner A (2005) Intralesional fibrous septum in chordoma: a clinicopathologic and immunohistochemical study of 122 lesions. Am J Clin Pathol 124:288–294

    Article  PubMed  Google Scholar 

  • Naka T, Kuester D, Boltze C, Schulz T-O, Samii A, Herold C, Ostertag H, Roessner A (2008a) Expression of matrix metalloproteinases-1, -2, and -9; tissue inhibitors of matrix metalloproteinases-1 and -2; cathepsin B; urokinase plasminogen activator; and plasminogen activator inhibitor, type I in skull base chordoma. Hum Pathol 39:217–223

    Article  PubMed  CAS  Google Scholar 

  • Naka T, Kuester D, Boltze C, Scheil S-B, Samii A, Herold C, Ostertag H, Krueger S, Roessner A (2008b) Expression of hepatocyte growth factor and c-MET in skull base chordoma. Cancer 112:104–110

    Article  PubMed  Google Scholar 

  • Naka T, Boltze C, Samii A, Samii M, Herold C, Ostertag H, Iwamoto Y, Oda Y, Tsuneyoshi M, Kuester D, Roessner A (2009) Expression of c-MET, low-molecular-weight cytokeratin, matrix metalloproteinases-1 and -2 in spinal chordoma. Histopathology 54:607–613

    Article  PubMed  Google Scholar 

  • Nakapoulou L, Gakiopoulou H, Keramopoulos A, Giannopoulou I, Athanassiadou P, Mavrommatis J, Davaris PS (2000) c-met tyrosine kinase receptor expression is associated with abnormal beta-catenin expression and favourable prognostic factors in invasive breast carcinoma. Histopathology 36:313–325

    Article  Google Scholar 

  • Obermajer N, Doljak B, Kos J (2009) Cytokeratin 8 ectoplasmic domain binds urokinase-type plasminogen activator to breast tumor cells and modulates their adhesion, growth and invasiveness. Mol Cancer 8:88

    Article  PubMed  Google Scholar 

  • Pena CE, Horvat BL, Fisher ER (1970) The ultrastructure of chordoma. Am J Clin Pathol 53:544–551

    PubMed  CAS  Google Scholar 

  • Rosenberg AE, Brown GA, Bhan AK, Lee JM (1994) Chondroid chordoma: a variant of chordoma: a morphological and immunohistochemical study. Am J Clin Pathol 101:36–41

    PubMed  CAS  Google Scholar 

  • Salisbury JR, Isaacson PG (1985) Demonstration of cytokeratins and an epithelial membrane antigen in chordomas and human fetal notochord. Am J Surg Pathol 9:791–797

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Ludwig RL, Marcove RC (1987) Sacrococcygeal chordoma: a clinicoradiological study of 60 patients. Skeletal Radiol 16:37–44

    Article  PubMed  CAS  Google Scholar 

  • Sonnenberg E, Meyer D, Weider K, Birchmeier C (1993) Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123:223–235

    Article  PubMed  CAS  Google Scholar 

  • Stoker M, Gherardi E, Perryman M, Gray J (1987) Scatter factor is a fibroblast-derived modulator of epithelial cell motility. Nature 327:239–242

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Naka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Naka, T. (2012). Chordoma: Role of CAM5.2. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 8. Tumors of the Central Nervous System, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4213-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4213-0_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4212-3

  • Online ISBN: 978-94-007-4213-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics