Skip to main content

Combined Macromolecular Adsorption and Coagulation for Improvement of Membrane Separation in Water Treatment

  • Chapter
  • First Online:
Advances in Water Treatment and Pollution Prevention

Abstract

Fouling is the biggest obstacle facing the operation of RO desalination plants. Seawater contains many foulants that foul RO membranes, such as suspended particles, natural organic matter (NOM), microorganisms, and heavy metals. Different processes such as coagulation, flocculation, acid treatment, pH adjustment, addition of anti-scalant, and media filtration have been used as conventional pretreatment. Nowadays, membrane systems are utilized for pretreatment because of their feasibility, process reliability, plant availability, modularity, relative insensitivity in case of raw water, and lower operating costs.

Natural organic matter and heavy metals are present in all water sources. They are of particular concern in desalination due to their toxicity and due to their effects on RO membrane fouling. Natural organic matter is a complex mixture of compounds formed from the breakdown of plant and animal material in the environment. Natural organic matter contains humic substances (HS) among other constituents. Heavy metals usually exist as free ions, but they also have a tendency of binding with HS. Consequently, heavy metals retention by ultrafiltration (UF) membranes is possible even though heavy metals have molecular sizes lower than the pore sizes of the membranes because of HS-metal complex formation.

In this study, P005F UF membrane retention of humic substances, Cu and Zn, and its fouling is investigated with and without the aid of poly diallydimethylammonium chloride (PDADMAC) and copolymer of dimethyl aminoethyl acrylate (CoAA) polyelectrolyte coagulants. The conditions studied are salinity level, humic substances (HS) concentration, heavy metals concentration, and polyelectrolyte’s type and concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C p :

Permeate concentration (mg/l)

C b :

Bulk concentration (mg/l)

C w :

Wall concentration (mg/l)

R m :

Hydraulic membrane resistance (m−1)

ΔP :

Trans-membrane pressure (bar)

J 0 :

Pure water flux (L/m2.s1)

J v :

Permeate flux (L/m2.s)

J i :

Pure water flux after 30 min backwash (L/m2.s)

k :

Mass transfer coefficient (L/m2.s)

d h :

Hydraulic diameter of the filtration channel (m)

D :

Bulk diffusivity of solute (m2/s)

R g :

Gel layer resistance (m−1)

C g :

Gel concentration (mg/l)

R c :

Concentration polarization resistance (m−1)

R a :

Adsorption resistance (m−1)

R a1 :

Weak adsorption resistance (m−1)

R a2 :

Strong adsorption resistance (m−1)

η :

Dynamic viscosity (kg/m/s) or (Pa.s)

References

  1. Ebensperger U, Isley P (2005) Review of the current state of desalination. Water Policy Working Paper, 2005–008

    Google Scholar 

  2. Borsani R, Rebagliati S (2005) Fundamentals and costing of MSF desalination plants and comparison with other technologies. Des J 182:29–37. doi:10.1016/j.desal.2005.03.007

    CAS  Google Scholar 

  3. Semiat R (2000) Desalination: present and future. IWRA 25:54–65

    CAS  Google Scholar 

  4. Nicolaisen B (2003) Developments in membrane technology for water treatment. Des J 153:355–360. doi:10.1016/S0011-9164(02)01127-X

    CAS  Google Scholar 

  5. Ghabayen S, McKee M, Kemblowski M (2004) Characterization of uncertainties in the operation and economics of the proposed seawater desalination plant in the Gaza Strip. Des J 161:191–201. doi:10.1016/S0011-9164(04), 90054-9

    CAS  Google Scholar 

  6. Sikora J, Hansson C, Ericsson B (1989) Pretreatment and desalination of mine drainage water in a pilot plant. Des J 75:363–373. doi:10.1016/0011-9164(89), 85022-2

    CAS  Google Scholar 

  7. Redondo J (2001) Brackish-, sea- and wastewater desalination. Des J 138:29–40. doi:10.1016/S0011-9164(01), 00241-7

    CAS  Google Scholar 

  8. Schaefer A, Schwicker U, Fischer M, Fane A, Waite T (2000) Microfiltration of colloids and natural organic matter. J Membr Sci 171:151–172. doi:10.1016/S0376-7388(99), 00286-0

    Google Scholar 

  9. Wilkinson K, Negre J, Buffle J (1997) Coagulation of colloidal material in surface water: the role of natural organic matter. J Contaminant Hydrol 26:229–243. doi:10.1016/S0169-7722(96)00071-X

    CAS  Google Scholar 

  10. Costa A, De Pinho M (2002) The role of membrane morphology on ultrafiltration for natural organic matter removal. Des J 145:299–304. doi:10.1016/S0011-9164(02), 00426-5

    CAS  Google Scholar 

  11. Xu W, Chellam S, Clifford D (2004) Indirect evidence for deposit rearrangement during dead-end microfiltration of iron coagulated suspensions. J Membr Sci 239:243–254. doi:10.1016/j.memsci.2004.03.039

    CAS  Google Scholar 

  12. Hong S, Elimelech M (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J Membr Sci 132:159–181. doi:10.1016/S0376-7388(97), 00060-4

    CAS  Google Scholar 

  13. Raspor B (1989) Adsorption of humic substances from seawater at differently charged surfaces. Sci Total Environ 81–82:319–328. doi:10.1016/0048-9697(89), 90139-3

    Google Scholar 

  14. Aiken G, McKnight D, Wershaw R, MacCarthy E (1985) Humic substances in soil, sediment, and water. Wiley, New York

    Google Scholar 

  15. Ruohomaki K, Vaisanen P, Metsamuuronen S, Kulovaara M, Nystrom M (1998) Characterization and removal of humic substances in ultra- and nanofiltration. Des J 118:273–283. doi:10.1016/S0011-9164(98), 00147-7

    CAS  Google Scholar 

  16. De Paolis F, Kukkonen J (1997) Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material. Chemosphere J 34:1693–1704. doi:10.1016/S0045-6535(97)00026-X

    Google Scholar 

  17. Amy G, Collins M, Kuo C, King P (1987) Comparing gel permeation chromatography and ultrafiltration for the molecular weight characterization of aquatic organic matter. AWWA 79:43–49

    CAS  Google Scholar 

  18. Rao L, Choppin G (1995) Thermodynamic study of the complexation of neptunium(V) with humic acids. Radiochim Acta 69:87–95

    CAS  Google Scholar 

  19. Aiken G, Malcolm R (1987) Molecular weights of aquatic fulvic acids by vapor pressure osmometry. Geochim Cosmochim Acta 51:2177–2184

    CAS  Google Scholar 

  20. Beckett R, Zhang J, Giddings J (1987) Determination of molecular weight distributions of fulvic and humic acids, using flow field-flow fractionation. Environ Sci Technol 21:289–295

    CAS  Google Scholar 

  21. Reid P, Wilkinson A, Tipping E, Jones M (1990) Determination of molecular weights of humic substances by analytical (UV scanning) ultracentrifugation. Geochim Cosmochim Acta 54:131–138

    CAS  Google Scholar 

  22. Pokrovsky O, Schott J (2002) Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chem Geol 190:141–179

    CAS  Google Scholar 

  23. Munksgaard N, Parry D (2001) Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estuarine seawater. Mar Chem 75:165–184

    CAS  Google Scholar 

  24. Gavriil A, Angelidis M (2005) Metal and organic carbon distribution in water column of a shallow enclosed Bay at the Aegean Sea Archipelago: Kalloni Bay, Island of Lesvos, Greece. Estuar Coast Shelf Sci 64:200–210

    CAS  Google Scholar 

  25. Yates D, Joyce K, Heaney P (1998) Complexation of copper with polymeric silica in aqueous solution. Appl Geochem 13:235–241

    CAS  Google Scholar 

  26. Goosen M, Sablani S, Al-Hinai H, Al-Obeidani S, Al-Belushi R, Jackson D (2005) Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Sep Sci Tech 39:2261–2297

    Google Scholar 

  27. Abu Qdais H, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Des J 164:105–110

    Google Scholar 

  28. Alpatova A, Verbych S, Bryk M, Nigmatullin R, Hilal N (2004) Ultrafiltration of water containing natural organic matter: heavy metal removing in the hybrid complexation–ultrafiltration process. Sep Pur Tech 40:155–162

    CAS  Google Scholar 

  29. Harmant P, Aimar P (1998) Coagulation of colloids in a boundary layer during cross-flow filtration. Colloids Surf A Physicochem Eng Asp 138:217–230

    CAS  Google Scholar 

  30. Kretzschmar R, Sticher H (1998) Colloid transport in natural porous media: Influence of surface chemistry and flow velocity. Phys Chem Earth 23:133–139

    Google Scholar 

  31. Eyrolle F, Benaim J (1999) Metal available sites on colloidal organic compounds in surface waters (Brazil). Water Res 33:995–1004

    CAS  Google Scholar 

  32. Tipping E, Lofts S, Lawlor A (1998) Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Sci Total Environ 210–211:63–77

    Google Scholar 

  33. Martell A (1957) The chemistry of metal chelates in plant nutrition. Soil Sci 84:13–26

    Google Scholar 

  34. Pervov A, Andrianov A, Efremov R, Desyatov A, Baranov A (2003) A new solution for the Caspian Sea desalination: low-pressure membranes. Des J 157:377–384

    CAS  Google Scholar 

  35. Teuler A, Glucina K, Laine J (1999) Assessment of UF pretreatment prior RO membranes for seawater desalination. Des J 125:89–96

    CAS  Google Scholar 

  36. Schafer A, Fane A, Waite T (1998) Nanofiltration of natural organic matter: removal, fouling and the influence of multivalent ions. Des J 118:109–122

    CAS  Google Scholar 

  37. Schaefer A, Fane A, Waite T (2000) Fouling effects on rejection in the membrane filtration of natural waters. Des J 131:215–224

    Google Scholar 

  38. Agashichev S (2006) Enhancement of concentration polarization due to gel accumulated at membrane surface. J Membr Sci 285:96–101

    CAS  Google Scholar 

  39. Vrouwenvelder H, Van Paassen J, Folmer H, Hofman A, Nederlof M, Kooij D (1998) Biofouling of membranes for drinking water production. Des J 118:157–166

    CAS  Google Scholar 

  40. Vrouwenvelder J, Kappelhof J, Heijman S, Schippers J, Kooij D (2003) Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water. Des J 157:361–365

    CAS  Google Scholar 

  41. Van Der Bruggen B, Braeken L, Vandecasteele C (2002) Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds. Des J 147:281–288

    Google Scholar 

  42. Isaias N (2001) Experience in reverse osmosis pretreatment. Des J 139:57–64

    CAS  Google Scholar 

  43. Luo M, Wang Z (2001) Complex fouling and cleaning in-place of a reverse osmosis desalination system. Des J 141:15–22

    CAS  Google Scholar 

  44. Chua K, Hawlader M, Malek A (2003) Pretreatment of seawater: results of pilot trials in Singapore. Des J 159:225–243

    CAS  Google Scholar 

  45. Kaiya Y, Itoh Y, Fujita K, Takizawa S (1996) Study on fouling materials in the membrane treatment process for potable water. Des J 106:71–77

    CAS  Google Scholar 

  46. Clark M, Lucas P (1998) Diffusion and partitioning of humic acid in a porous ultrafiltration membrane. J Membr Sci 143:13–25

    CAS  Google Scholar 

  47. Jones K, O’Melia C (2000) Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength. J Membr Sci 165:31–46

    CAS  Google Scholar 

  48. Chang Y, Benjamin M (2003) Formation of natural organic matter fouling layer on ultrafiltration membranes. Envir Eng J 129:25–32

    CAS  Google Scholar 

  49. Lee S, Lee C (2006) Microfiltration and ultrafiltration as a pretreatment for nanofiltration of surface water. J Sep Sci Tech 41:1–23

    CAS  Google Scholar 

  50. Choksuchart P, Heran M, Grasmick A (2002) Ultrafiltration enhanced by coagulation in an immersed membrane system. Des J 145:265–272

    CAS  Google Scholar 

  51. Brehant A, Bonnelye V, Perez M (2002) Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination. Des J 144:353–360

    CAS  Google Scholar 

  52. Derradji A, Taha S, Dorange G (2005) Application of the resistances in series model in ultrafiltration. Des J 184:1357–1364

    Google Scholar 

  53. Clever M, Jordt F, Knauf R, Rabiger N, Rudebusch M, Hilker-Scheibel R (2000) Process water production from river water by ultrafiltration and reverse osmosis. Des J 131:325–336

    CAS  Google Scholar 

  54. Bottino A, Capannelli C, Del Borghi A, Colombino M, Conio O (2001) Water treatment for drinking purpose: ceramic microfiltration application. Des J 141:75–79

    CAS  Google Scholar 

  55. Stover R, Ameglio A, Khan P (2005) The ghalilah SWRO plant an overview of the solutions adopted to minimize energy consumption. Des J 184:1197–1201

    Google Scholar 

  56. Gille D, Czolkoss W (2005) Ultrafiltration with multi bore membranes as seawater pre-treatment. Des J 182:295–301

    Google Scholar 

  57. Halpern D, McArdle J, Antrim B (2005) UF pretreatment for SWRO: pilot studies. Des J 182:317–326

    Google Scholar 

  58. Kothari N, Taylor J (1998) Pilot scale microfiltration at Manitowoc. Des J 119:93–102

    CAS  Google Scholar 

  59. Wang K, Matsuura T, Chung T, Guo W (2004) The effects of flow angle and shear rate within the spinneret on the separation performance of poly(ethersulfone) (PES) ultrafiltration hollow fiber membranes. J Membr Sci 240:67–79

    CAS  Google Scholar 

  60. Cote P, Siverns S, Monti S (2005) Comparison of membrane-based solutions for water reclamation and desalination. Des J 182:251–257

    CAS  Google Scholar 

  61. Wolf P, Siverns S, Monti S (2005) UF membranes for RO desalination pretreatment. Des J 182:289–296

    Google Scholar 

  62. Kruithof J, Schippers J, Kamp P, Folmer H, Hofman J (1998) Integrated multi-objective membrane systems for surface water treatment: pretreatment of reverse osmosis by conventional treatment and ultrafiltration. Des J 117:37–48

    CAS  Google Scholar 

  63. Teng C, Hawlader M, Malek A (2003) An experiment with different pretreatment methods. Des J 156:51–58

    CAS  Google Scholar 

  64. Van Hoof S, Hashim A, Kordes A (1999) The effect of ultrafiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications. Des J 124:231–242

    Google Scholar 

  65. Schafer A, Richards B (2005) Field testing of a hybrid membrane system for groundwater desalination. Des J 183:55–62

    Google Scholar 

  66. Glueckstern P, Priel M, Wilf M (2002) Field evaluation of capillary UF technology as a pretreatment for large seawater RO systems. Des J 147:55–62

    CAS  Google Scholar 

  67. Hofman J, Beumer M, Baars E, Van Der Hoek J, Koppers H (1998) Enhanced surface water treatment by ultrafiltration. Des J 119:113–125

    Google Scholar 

  68. Murrer J, Rosberg R (1998) Desalting of seawater using UF and RO – results of a pilot study. Des J 118:1–4

    CAS  Google Scholar 

  69. Speth T, Gusses A, Summers R (2000) Evaluation of nanofiltration pretreatments for flux loss control. Des J 130:31–44

    CAS  Google Scholar 

  70. Assemi S, Newcombe G, Hepplewhite C, Beckett R (2004) Characterization of natural organic matter fractions separated by ultrafiltration using flow field-flow fractionation. Water Res 38:1467–1476

    CAS  Google Scholar 

  71. Hassan A, Farooque A, Jamaluddin A, Al-Amoudi A, Al-Sofi M, Al-Rubaian A, Kither N, Al-Tisan I, Rowaili A (2000) A demonstration plant based on the new NF-SWRO process. Des J 131:157–171

    CAS  Google Scholar 

  72. Lee H, Amy G, Cho J, Yoon Y, Moon S, Kim I (2001) Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Res 35:3301–3308

    CAS  Google Scholar 

  73. Carroll T, King S, Gary S, Bolto B, Booker N (2000) The fouling of microfiltration membranes by NOM after coagulation treatment. Water Res 34:2861–2868

    CAS  Google Scholar 

  74. Yiantsios S, Karabelas A (1998) The effect of colloid stability on membrane fouling. Des J 118:143–152

    CAS  Google Scholar 

  75. Jarusutthirak C, Amy G, Croue P (2002) Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Des J 145:247–255

    CAS  Google Scholar 

  76. Kuo C, Amy G (1988) Factors affecting coagulation with aluminium sulphate-II: dissolved organic matter removal. Water Res 22:863–872

    CAS  Google Scholar 

  77. Al-Mutairi N, Hamoda M, Al-Ghusain I (2004) Coagulant selection and sludge conditioning in a slaughterhouse wastewater treatment plant. Bioresource Tech 95:115–119

    CAS  Google Scholar 

  78. Kam S, Gregory J (2001) The interaction of humic substances with cationic polyelectrolytes. Water Res 35:3557–3566

    CAS  Google Scholar 

  79. Vickers J, Thompson M, Kelkar U (1995) The use of membrane filtration in conjunction with coagulation processes for improved NOM removal. Des J 102:57–61

    CAS  Google Scholar 

  80. Ma J, Liu W (2002) Effectiveness of ferrate (VI) preoxidation in enhancing the coagulation of surface waters. Water Res 36:4959–4962

    CAS  Google Scholar 

  81. Judd S, Hillis P (2001) Optimisation of combined coagulation and microfiltration for water treatment. Water Res 35:2895–2904

    CAS  Google Scholar 

  82. Maartens A, Swart A, Jacobs E (1999) Feed-water pretreatment: methods to reduce membrane fouling by natural organic matter. J Membr Sc 163:51–62

    CAS  Google Scholar 

  83. Huang C, Shiu H (1996) Interactions between alum and organics in coagulation. Colloids Surf A: Physiochem Eng Aspects 113:155–163

    CAS  Google Scholar 

  84. Bolto B, Abbt-Braun G, Dixon D, Eldridge R, Frimmel F, Hesse S, King S, Toifl M (1999) Experimental evaluation of cationic polyelectrolytes for removing natural organic matter from water. Water Sci Technol 40:71–79

    CAS  Google Scholar 

  85. Gabelich C, Yun T, Coffey B, Mel Suffet I (2002) Effects of aluminum sulfate and ferric chloride coagulant residuals on polyamide membrane performance. Des J 150:15–30

    CAS  Google Scholar 

  86. Zidouri H (2000) Desalination in Morocco and presentation of design and operation of the Laayoune seawater reverse osmosis plant. Des J 131:137–145

    CAS  Google Scholar 

  87. Kampa P, Kruithof J, Folmer H (2000) UF/RO treatment plant Heemskerk: from challenge to full scale application. Des J 131:27–35

    Google Scholar 

  88. Abdessemed D, Nezzal G (2002) Treatment of primary effluent by coagulation-adsorption-ultrafiltration for reuse. Des J 152:367–373

    Google Scholar 

  89. Low S, Han H, Jin W (2004) Characteristics of a vibration membrane in water recovery from fine carbon-loaded wastewater. Des J 160:83–90

    CAS  Google Scholar 

  90. Hilal N, Al-Abri M, Al-Hinai H (2007) Characterization and retention of membranes using PEG, HS and polyelectrolytes. Des J 206:568–578. doi:10.1016/j.desal.2006.02.077

    CAS  Google Scholar 

  91. O’Melia C, Becker W, Au K (1999) Removal of humic substances by coagulation. Water Sci Technol 40:47–54

    Google Scholar 

  92. Verbych S, Bryk M, Alpatova A, Chornokur G (2005) Ground water treatment by enhanced ultrafiltration. Des J 179:237–244

    CAS  Google Scholar 

  93. Alvarez-Puebla R, Valenzuela-Calahorro C, Garrido J (2004) Retention of Co(II), Ni(II), and Cu(II) on a purified brown humic acid. Modeling and characterization of the sorption process. Langmuir J 20:3657–3664

    CAS  Google Scholar 

  94. Hilal N, Al-Abri M, Moran A, Al-Hinai H (2008) Effects of heavy metals and polyelectrolytes in humic substance coagulation under saline conditions. Des J 220:85–95. doi:10.1016/j.desal.2007.01.024

    CAS  Google Scholar 

  95. Hilal N, Al-Abri M, Al-Hinai H, Somerfield C (2008) Combined humic substance and heavy metals agglomeration, and membrane filtration under saline conditions. Sep Sci Tech J 43:1488–1506. doi:10.1080/01496390801941091

    CAS  Google Scholar 

  96. Spark K, Wells J, Johnson B (1997) Sorption of heavy metals by mineral-humic acid substrates. Aust J Soil Res 35:113–122

    CAS  Google Scholar 

  97. Spark K, Wells J, Johnson B (1997) The interaction of a humic acid with heavy metals. Aust J Soil Res 35:89–101

    CAS  Google Scholar 

  98. Alvarez-Puebla R, Valenzuela-Calahorro C, Garrido J (2004) Cu(II) retention on a humic substance. J Colloid Interface Sci 270:47–55

    CAS  Google Scholar 

  99. Zhou P, Yan H, Gu B (2005) Competitive complexation of metal ions with humic substances. Chemosphere J 58:1327–1337

    CAS  Google Scholar 

  100. Fukushima M, Nakayasu K, Tanaka S, Nakamura H (1995) Chromium(III) binding abilities of humic acids. Anal Chim Acta 317:195–206

    CAS  Google Scholar 

  101. Alaerts G, Van Haute A (1981) Flocculation of brackish water from a tidal river. Water Res 15:517–523

    Google Scholar 

  102. Chang E, Chiang P, Tang W, Chao S, Hsing H (2005) Effects of polyelectrolytes on reduction of model compounds via coagulation. Chemosphere J 58:1141–1150

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Middle East Desalination Research Center (MEDRC) for funding this work (project number 03-AS-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidal Hilal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Al-Abri, M., Tizaoui, C., Hilal, N. (2012). Combined Macromolecular Adsorption and Coagulation for Improvement of Membrane Separation in Water Treatment. In: Sharma, S., Sanghi, R. (eds) Advances in Water Treatment and Pollution Prevention. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4204-8_9

Download citation

Publish with us

Policies and ethics