Skip to main content

Microwave-Assisted Organic Pollutants Degradation

  • Chapter
  • First Online:
Advances in Water Treatment and Pollution Prevention

Abstract

Radiation technology is regarded to be a promising “green” alternative for its high efficiency in organic pollutants remediation. To date, microwave energy has been widely used in several domestic, industrial, and medical applications. In line with the need for environmental sustainability through the application of green chemistry and green engineering practices, the potential application of microwave energy irradiation as a major source of energy and/or pretreatment for the degradation of various types of organic pollutants found in wastewaters and other contaminated water bodies has been a growing research interest. This chapter will give an account of (1) the environmental issues related to the contamination of water by organic pollutants such as industrial/textile dyes, pesticides, herbicides, xenobiotics, PAHs, PCBs, and other persistent organic pollutants, and (2) research on the application of ultrasound and mainly microwave power irradiation for the degradation these organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    CAS  Google Scholar 

  2. Beltrame MO, De Marco SG, Marcovecchio JE (2010) Effects of zinc on molting and body weight of the estuarine crab Neohelice granulata (Brachyura: Varunidae). Sci Total Environ 408:531–536

    CAS  Google Scholar 

  3. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food web–specific biomagnification of persistent organic pollutants. Science 317:236–239

    CAS  Google Scholar 

  4. Takeuchi I, Miyoshi N, Mizukawa K, Takada H, Ikemoto T, Omori K, Tsuchiya K (2009) Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by δ13C and δ15N isotope ratios as guides to trophic web structure. Mar Pollut Bull 58:663–671

    CAS  Google Scholar 

  5. Carpenter S, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Issue Ecol 3:1–12

    Google Scholar 

  6. Kulkarni PS, Crespo JG, Afonso CAM (2008) Dioxins sources and current remediation technologies — a review. Environ Int 34:139–153

    CAS  Google Scholar 

  7. Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288

    CAS  Google Scholar 

  8. Mascolo G, Ciannarella R, Balest L, Lopez A (2008) Effectiveness of UV–based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation. J Hazard Mater 152:1138–1145

    CAS  Google Scholar 

  9. Wang JY, Huang XJ, Kao JCM, Stabnikova O (2007) Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process. J Hazard Mater 144:292–299

    CAS  Google Scholar 

  10. Kim JH, Park PK, Lee CH, Kwon HH (2008) Surface modification of nanofiltration membranes to improve the removal of organic micro–pollutants (EDCs and PhACs) in drinking water treatment: graft polymerization and cross–linking followed by functional group substitution. J Membr Sci 321:190–198

    CAS  Google Scholar 

  11. Nissen S, Alexander BD, Dawood I et al (2009) Remediation of a chlorinated aromatic hydrocarbon in water by photoelectrocatalysis. Environ Pollut 157:72–76

    CAS  Google Scholar 

  12. Margesin R, Hämmerle M, Tscherko D (2007) Microbial activity and community composition during bioremediation of diesel–Oil–contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation. Microb Ecol 53:259–269

    CAS  Google Scholar 

  13. Zhao B, Poh CL (2008) Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8:874–881

    CAS  Google Scholar 

  14. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    CAS  Google Scholar 

  15. Mudhoo A, Mohee R (2010) Composting as a bioremediation technique for hazardous organic contaminants. In: Sharma SK, Mudhoo A (eds) Green chemistry for environmental sustainability. Taylor & Francis, Boca Raton, pp 215–247

    Google Scholar 

  16. Whiteley CG, Lee D-J (2006) Enzyme technology and biological remediation. Enzyme Microb Technol 38:291–316

    CAS  Google Scholar 

  17. Xiao L, Qu X, Zhu D (2007) Biosorption of nonpolar hydrophobic organic compounds to Escherichia coli facilitated by metal and proton surface binding. Environ Sci Technol 41:2750–2755

    CAS  Google Scholar 

  18. Mathialagan T, Viraraghavan T (2009) Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresour Technol 100:549–558

    CAS  Google Scholar 

  19. Kumari K, Abraham TE (2007) Biosorption of anionic textile dyes by nonviable biomass of fungi and yeast. Bioresour Technol 98:1704–1710

    CAS  Google Scholar 

  20. Ghodake G, Jadhav S, Dawkar V, Govindwar S (2009) Biodegradation of diazo dye Direct brown MR by Acinetobacter calcoaceticus NCIM 2890. Int Biodeterior Biodegrad 63: 433–439

    CAS  Google Scholar 

  21. El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeterior Biodegrad 63:699–704

    CAS  Google Scholar 

  22. Contreras-Ramos SM, Álvarez-Bernal D, Dendooven L (2009) Characteristics of earthworms (Eisenia fetida) in PAHs contaminated soil amended with sewage sludge or vermicompost. Appl Soil Ecol 41:269–276

    Google Scholar 

  23. Das KC, Xia K (2008) Transformation of 4–nonylphenol isomers during biosolids composting. Chemosphere 70:761–768

    CAS  Google Scholar 

  24. Kupper T, Bucheli TD, Brändli RC, Ortelli D, Edder P (2008) Dissipation of pesticides during composting and anaerobic digestion of source–separated organic waste at full–scale plants. Bioresour Technol 99:7988–7994

    CAS  Google Scholar 

  25. Ghaly AE, Alkoaik F, Snow A (2007) Degradation of pirimiphos–methyl during thermophilic composting of greenhouse tomato plant residues. Can Biosyst Eng 49:6.1–6.11

    Google Scholar 

  26. Delgado-Moreno L, Peña A (2009) Compost and vermicompost of olive cake to bioremediate triazines–contaminated soil. Sci Total Environ 407:1489–1495

    CAS  Google Scholar 

  27. Elefsiniotis P, Li W (2008) Biodegradation behavior of agricultural pesticides in anaerobic batch reactors. J Environ Sci Health B 43:172–178

    CAS  Google Scholar 

  28. Celis E, Elefsiniotis P, Singhal N (2008) Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic or anaerobic conditions. Water Res 42:3218–3224

    CAS  Google Scholar 

  29. Baraldi EA, Damianovic MHRZ, Manfio GP, Foresti E, Vazoller RF (2008) Performance of a horizontal–flow anaerobic immobilized biomass (HAIB) reactor and dynamics of the microbial community during degradation of pentachlorophenol (PCP). Anaerobe 14:268–274

    Google Scholar 

  30. Kidwai M, Mohan R (2005) Green chemistry: an innovative technology. Found Chem 7:269–287

    CAS  Google Scholar 

  31. Anastas PT, Warner JC (1998) Green chemistry, theory and practice. Oxford University Press, Oxford

    Google Scholar 

  32. Kirchhoff MM (2003) Promoting green engineering through green chemistry. Environ Sci Technol 37:5349–5353

    CAS  Google Scholar 

  33. Feng D, Aldrich C (2000) Sonochemical treatment of simulated soil contaminated with diesel. Adv Environ Res 4:103–112

    Google Scholar 

  34. Suslick KS, Casadonte DJ, Green MLH, Thompson ME (1987) Effects of high intensity ultrasound on inorganic solids. Ultrasonics 25:56–61

    CAS  Google Scholar 

  35. Stephanis CG, Hariris JG, Mourmouras DE (1997) Process (mechanism) of erosion of soluble brittle materials caused by cavitation. Ultrason Sonochem 4:269–271

    CAS  Google Scholar 

  36. Ley SV, Low CMR (1989) Ultrasound in synthesis. Springer, Berlin, Ch. 2

    Google Scholar 

  37. Flores R, Blass G, Dominguez V (2007) Soil remediation by an advanced oxidative method assisted with ultrasonic energy. J Hazard Mater 140:399–402

    CAS  Google Scholar 

  38. Adewuyi YG (2005) Sonochemistry in environmental remediation. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water. Environ Sci Technol 39:3409–3420

    CAS  Google Scholar 

  39. Chowdhury P, Viraraghavan T (2009) Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes – a review. Sci Total Environ 407: 2474–2492

    CAS  Google Scholar 

  40. Pham TD, Shrestha RA, Virkutyte J, Sillanpaa M (2009) Recent studies in environmental applications of ultrasound. Can J Civil Eng 36:1849–1858

    Google Scholar 

  41. Sponza DT, Oztekin R (2010) Removals of PAHs and acute toxicity via sonication in a petrochemical industry wastewater. Chem Eng J 162:142–150

    CAS  Google Scholar 

  42. Chang JH, Ellis AV, Yan CT, Tung CH (2009) The electrochemical phenomena and kinetics of EDTA–copper wastewater reclamation by electrodeposition and ultrasound. Sep Purif Technol 68:216–221

    CAS  Google Scholar 

  43. Matouq MA-D, Al-Anber ZA (2007) The application of high frequency ultrasound waves to remove ammonia from simulated industrial wastewater. Ultrason Sonochem 14:393–397

    CAS  Google Scholar 

  44. Kang Y, Xue X, Yang H, Liu J (2009) Degradation of nitrobenzene in wastewater by slag titania with ultrasound. J Chin Ceram Soc 37:536–542

    CAS  Google Scholar 

  45. Trabelsi F, Aït-Lyazidi H, Ratsimba B et al (1996) Oxidation of phenol in wastewater by sonoelectrochemistry. Chem Eng Sci 51:1857–1865

    CAS  Google Scholar 

  46. Goskonda S, Catallo WJ, Junk T (2004) Sonochemical degradation of aromatic organic pollutants. Waste Manag 22:351–356

    Google Scholar 

  47. Cravotto G, Di Carlo S, Curini M, Tumiatti V, Roggero C (2007) A new flow reactor for the treatment of polluted water with microwave and ultrasound. J Chem Technol Biotechnol 82:205–208

    CAS  Google Scholar 

  48. Jacob J, Chia LHL, Boey FYC (1995) Review—thermal and non–thermal interaction of microwave radiation with materials. J Mater Sci 30:5321–5327

    CAS  Google Scholar 

  49. Hill JM, Marchant TR (1996) Modelling microwave heating. Appl Math Model 20:3–15

    Google Scholar 

  50. Reimbert CG, Minzoni AA, Smyth NF (1996) Effect of radiation losses on hotspot formation and propagation in microwave heating. IMA J Appl Math 57:165–179

    Google Scholar 

  51. Wu T-N (2008) Environmental perspectives of microwave applications as remedial alternatives: review. Pract Period Hazard Tox Radioact Waste Manag 12:102–115

    CAS  Google Scholar 

  52. Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis – a critical technology overview. Green Chem 6:128–141

    Google Scholar 

  53. Sonune A, Ghate R (2004) Developments in wastewater treatment methods. Desalination 167:55–63

    CAS  Google Scholar 

  54. Mahmoodi NM, Arami M (2009) Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J Photochem Photobiol B Biol 94:20–24

    CAS  Google Scholar 

  55. Kurinobu S, Tsurusaki K, Natui Y, Kimata M, Hasegawa M (2007) Decomposition of pollutants in wastewater using magnetic photocatalyst particles. J Magn Magn Mater 310:1025–1027

    Google Scholar 

  56. Schrank SG, Ribeiro N, dos Santos J, Santos Souza D, Santos Souza EE (2007) Decolourisation effects of Vat Green 01 textile dye and textile wastewater using H2O2/UV process. J Photochem Photobiol A Chem 186:125–129

    CAS  Google Scholar 

  57. Aleboyeh A, Daneshvar N, Kasiri MB (2008) Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chem Eng Process Process Intensif 47:827–832

    CAS  Google Scholar 

  58. Khattri SD, Singh MK (2009) Removal of malachite green from dye wastewater using neem sawdust by adsorption. J Hazard Mater 167:1089–1094

    CAS  Google Scholar 

  59. Li J, Cheng H, Zhang G, Qi S, Li X (2009) Polycyclic aromatic hydrocarbon (PAH) deposition to and exchange at the air–water interface of Luhu, an urban lake in Guangzhou, China. Environ Pollut 157:273–279

    CAS  Google Scholar 

  60. Zhu L, Chen Y, Zhou R (2008) Distribution of polycyclic aromatic hydrocarbons in water, sediment and soil in drinking water resource of Zhejiang Province, China. J Hazard Mater 150:308–316

    CAS  Google Scholar 

  61. Liang Y, Tse MF, Young L, Wong MH (2007) Distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish at Mai Po Marshes Nature Reserve, Hong Kong. Water Res 41:1303–1311

    CAS  Google Scholar 

  62. Cailleaud K, Forget-Leray J, Souissi S, Hilde D, LeMenach K, Budzinski H (2007) Seasonal variations of hydrophobic organic contaminant concentrations in the water–column of the Seine Estuary and their transfer to a planktonic species Eurytemora affinis (Calanoïda, copepoda). Part 1: PCBs and PAHs. Chemosphere 70:270–280

    CAS  Google Scholar 

  63. Magnusson K, Magnusson M, Östberg P, Granberg M, Tiselius P (2007) Bioaccumulation of 14C–PCB 101 and 14C–PBDE 99 in the marine planktonic copepod Calanus finmarchicus under different food regimes. Mar Environ Res 63:67–81

    CAS  Google Scholar 

  64. Chak S, Kluskens B, Ford D (2010) Determination of polychlorinated biphenyl (PCBs) and dichlorodiphenyltrichloroethane (DDTs) in sediments in Boeng Cheung Ek, Phnom Penh, Cambodia. Asia J Water Environ Pollut 7:3–11

    CAS  Google Scholar 

  65. Vane CH, Harrison I, Kim AW (2007) Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, U.K. Sci Total Environ 374:112–126

    CAS  Google Scholar 

  66. Kuster M, López J, de Alda M, Hernando MD, Petrovic M, Martín-Alonso J, Barceló D (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J Hydrol 358:112–123

    CAS  Google Scholar 

  67. Zhou R, Zhu L, Yang K, Chen Y (2006) Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China. J Hazard Mater 137:68–75

    CAS  Google Scholar 

  68. Leong KH, Tan LLB, Mustafa AM (2002) Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere 66:1153–1159

    Google Scholar 

  69. Qiu S, Zhu T, Wang F, Hu J (2008) Air–water Gas exchange of organochlorine pesticides in Taihu Lake, China. Environ Sci Technol 42:1928–1932

    CAS  Google Scholar 

  70. Iwakuma T, Shiraishi H, Nohara S, Takamura N (1993) Runoff properties and change in concentrations of agricultural pesticides in a river system during a rice cultivation period. Chemosphere 27:677–691

    CAS  Google Scholar 

  71. Knee KL, Gossett R, Boehm AB, Paytan A (2010) Caffeine and agricultural pesticide concentrations in surface water and groundwater on the north shore of Kauai (Hawaii, USA). Mar Pollut Bull 60:1376–1382

    CAS  Google Scholar 

  72. Schwab AP, Splichal PA, Banks MK (2006) Persistence of atrazine and alachlor in ground water aquifers and soil. Water Air Soil Pollut 171:203–235

    CAS  Google Scholar 

  73. Chen J-Z, Meng S-L, Hu G-D, Qu J-H (2009) Bioaccumulation of herbicide atrazine in Carassius auratus. J Agro-Environ Sci 28:1313–1318

    CAS  Google Scholar 

  74. Navarro S, Vela N, José Giménez M, Navarro G (2004) Persistence of four s–triazine herbicides in river, sea and groundwater samples exposed to sunlight and darkness under laboratory conditions. Sci Total Environ 329:87–97

    CAS  Google Scholar 

  75. Scheyer A, Morville S, Mirabel P, Millet M (2007) Pesticides analysed in rainwater in Alsace region (eastern France): comparison between urban and rural sites. Atmos Environ 41:7241–7252

    CAS  Google Scholar 

  76. Mamy L, Barriuso E, Gabrielle B (2005) Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate–resistant crops. Pest Manag Sci 61:905–916

    CAS  Google Scholar 

  77. Bartelt-Hunt SL, Snow DD, Damon T, Shockley J, Hoagland K (2009) The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environ Pollut 157:786–791

    CAS  Google Scholar 

  78. Fatta D, Achilleos A, Nikolaou A, Meriç S (2007) Analytical methods for tracing pharmaceutical residues in water and wastewater. TrAC Trend Anal Chem 26:515–533

    CAS  Google Scholar 

  79. Shariati FP, Mehrnia MR, Salmasi BM et al (2010) Membrane bioreactor for treatment of pharmaceutical wastewater containing acetaminophen. Desalination 250:798–800

    CAS  Google Scholar 

  80. Badawy MI, Wahaab RA, El-Kalliny AS (2009) Fenton–biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. J Hazard Mater 167: 567–574

    CAS  Google Scholar 

  81. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Persistence and fate of highly soluble pharmaceutical products in various types of municipal wastewater treatment plants. WIT Trans Ecol Environ I:799–807

    Google Scholar 

  82. Sim WJ, Lee JW, Oh JE (2010) Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ Pollut 158:1938–1947

    CAS  Google Scholar 

  83. Plósz BG, Leknes H, Liltved H, Thomas KV (2010) Diurnal variations in the occurrence and the fate of hormones and antibiotics in activated sludge wastewater treatment in Oslo, Norway. Sci Total Environ 408:1915–1924

    Google Scholar 

  84. Ikehata K, Gamal El-Din M, Snyder SA (2008) Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone: Sci Eng 30:21–26

    CAS  Google Scholar 

  85. Schlüsener MP, Bester K (2008) Behavior of steroid hormones and conjugates during wastewater treatment – a comparison of three sewage treatment plants. CLEAN – soil, Air. Water 36:25–33

    Google Scholar 

  86. Pedersen JA, Soliman M, Suffet IL (2005) Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. J Agric Food Chem 53:1625–1632

    CAS  Google Scholar 

  87. Nghiem LD, Manis A, Soldenhoff K, Schäfer AI (2004) Estrogenic hormone removal from wastewater using NF/RO membranes. J Membr Sci 242:37–45

    CAS  Google Scholar 

  88. Saien J, Nejati H (2007) Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J Hazard Mater 148:491–495

    CAS  Google Scholar 

  89. Antić MP, Jovancicevic B, Vrvić MM, Schwarzbauer J (2006) Petroleum pollutant degradation by surface water microorganisms. Environ Sci Pollut Res 13:320–327

    Google Scholar 

  90. El-Naas MH, Al-Zuhair S, Abu Alhaija M (2010) Removal of phenol from petroleum refinery wastewater through adsorption on date–pit activated carbon. Chem Eng J 162:997–1005

    CAS  Google Scholar 

  91. Meng J-B, Lu S-M, Yang L (2008) A test of emergency treatment of petroleum pollution in source water by powder activated carbon. Ind Water Wastewater 39:22–25

    CAS  Google Scholar 

  92. Correia VM, Stephenson T, Judd SD (1994) Characterisation of textile wastewaters – a review. Environ Technol 15:917–929

    CAS  Google Scholar 

  93. Hood EE (2002) From green plants to industrial enzymes. Enzyme Microb Technol 30: 279–283

    CAS  Google Scholar 

  94. Selvam K, Swaminathan K, Keo-Sang C (2003) Microbial decolorization of azo dyes and dye industry effluent by Fomes lividus. World J Microbiol Biotechnol 19:591–593

    CAS  Google Scholar 

  95. Hao OJ, Kim H, Chiang P-C (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449

    CAS  Google Scholar 

  96. Daneshvar N, Ashassi-Sorkhabi H, Tizpar A (2003) Decolorization of orange II by electrocoagulation method. Sep Purif Technol 31:153

    CAS  Google Scholar 

  97. Maguire RJ (1992) Occurrence and persistence of dyes in a Canadian river. Water Sci Technol 25:265–270

    CAS  Google Scholar 

  98. Maximo C, Amorim MTP, Costa-Ferreira M (2003) Biotransformation of industrial reactive azo dyes by Geotricum sp. CCMI 1019. Enzyme Microb Technol 32:145–151

    CAS  Google Scholar 

  99. Carliell CM, Barclay SJ, Buckley CA (1995) Microbial decolourizationof a reactive azo dye under anaerobic conditions. Water SA 21:61–69

    CAS  Google Scholar 

  100. Rajaguru P, Kalaiselvi K, Palanivel M, Subburam V (2000) Biodegradation of azo dyes in a sequential anaerobiceaerobic system. Appl Microbiol Biotechnol 54:268–273

    CAS  Google Scholar 

  101. Robinson TF, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247

    CAS  Google Scholar 

  102. Arslan I, Balcioglu IA, Tuhkanen T, Bahnemann D (2000) H2O2/UV–C and Fe2+/H2O2/UV–CversusTiO2/UV–A treatment for reactive dye wastewater. J Environ Eng 126:903

    CAS  Google Scholar 

  103. Stock N, Peller J, Vinodgopal K, Kamat PV (2000) Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 34:1747

    CAS  Google Scholar 

  104. Hutzinger O, Veerkamp W (1981) Xenobiotic chemicals with pollution potential. In: Leisinger T, Cook AM, Hiitter R, Naesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic, London, pp 3–45

    Google Scholar 

  105. Leisinger T (1983) Microorganisms and xenobiotic compounds. Experientia 39:1183–1220

    CAS  Google Scholar 

  106. Wu RSS (1999) Eutrophication, water borne pathogens and xenobiotic compounds: environmental risks and challenges. Mar Pollut Bull 39:11–22

    CAS  Google Scholar 

  107. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    CAS  Google Scholar 

  108. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH–degradation in soil. Environ Pollut 133:71–84

    CAS  Google Scholar 

  109. Wild SR, Jones KC (1992) Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock. Sci Total Environ 119: 85–119

    CAS  Google Scholar 

  110. Bhandari A, Xia K (2005) Hazardous organic chemicals in biosolids recycled as soil amendments. In: Handbook of environmental chemistry, vol 5/Part F. Springer, Berlin/Hiedelberg, pp 217–239

    Google Scholar 

  111. Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33

    CAS  Google Scholar 

  112. Ecobichon DJ (2000) Our changing perspectives on beneft and risks of pesticides: a historical overview. Neurotoxicology 21:211–218

    CAS  Google Scholar 

  113. Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 39:449–462

    Google Scholar 

  114. Derksen JGM, Rijs GBJ, Jongbloed RH (2004) Diffuse pollution of surface water by pharmaceutical products. Water Sci Technol 49:213–221

    CAS  Google Scholar 

  115. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    CAS  Google Scholar 

  116. Daughton CG (2002) Environmental stewardship and drugs as pollutants. Lancet 360: 1035–1036

    Google Scholar 

  117. Jones OAH, Voulvoulis N, Lester JN (2005) Human pharmaceuticals in wastewater treatment processes. Crit Rev Environ Sci Technol 35:401–427

    CAS  Google Scholar 

  118. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–942

    CAS  Google Scholar 

  119. Sedlak DL, Pinkston KE, Gray JL, Kolodziej EP (2003) Approaches for quantifying the attenuation of wastewater–derived contaminants in the aquatic environment. Chimia 57: 567–569

    CAS  Google Scholar 

  120. Ternes TA (2001) Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. Trends Anal Chem 20:419–434

    CAS  Google Scholar 

  121. Grahame-Smith DG, Aronson JK (2002) Oxford textbook of clinical pharmacology and drug therapy. Oxford University Press, Oxford

    Google Scholar 

  122. Rang HP, Dale M, Ritter JM (1999) Pharmacology. Churchill Livingstone, St. Louis

    Google Scholar 

  123. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    CAS  Google Scholar 

  124. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3257

    CAS  Google Scholar 

  125. Ternes T (2000) Pharmaceuticals and metabolites as contaminants of the aquatic environment: an overview. Abstr Pap Am Chem Soc 219:30-ENVR

    Google Scholar 

  126. Johnson A, Jurgens M (2003) Endocrine active industrial chemicals: release and occurrence in the environment. Pure Appl Chem 75:1895–1904

    CAS  Google Scholar 

  127. Hoffmann B, Landeck A (1999) Testicular endocrine function, seasonality and semen quality of the stallion. Anim Reprod Sci 57:89–98

    CAS  Google Scholar 

  128. Meng Z, Chen W, Mulchandani A (2005) Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. Environ Sci Technol 39:8958–8962

    CAS  Google Scholar 

  129. Chang H, Wan Y, Ghu J (2009) Determination and source apportionment of five classes of steroid hormones in urban rivers. Environ Sci Technol 43:7691–7698

    CAS  Google Scholar 

  130. Horikoshi S, Hidaka H, Serpone N (2004) Environmental remediation by an integrated microwave/UV illumination technique: VI. A simple modified domestic microwave oven integrating an electrodeless UV–Vis lamp to photodegrade environmental pollutants in aqueous media. J Photochem Photobiol A Chem 161:221–225

    CAS  Google Scholar 

  131. Hong J, Sun C, Yang SG, Liu YZ (2006) Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps. J Hazard Mater 133:162–166

    CAS  Google Scholar 

  132. Parida KM, Parija S (2006) Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Solar Energy 80:1048–1054

    CAS  Google Scholar 

  133. Lai TL, Lee CC, Wu KS, Shu YY, Wang CB (2006) Microwave–enhanced catalytic degradation of phenol over nickel oxide. Appl Catal B Environ 68:147–153

    CAS  Google Scholar 

  134. Lai TL, Liu JY, Yong KF, Shu YY, Wang CB (2008) Microwave–enhanced catalytic degradation of 4–chlorophenol over nickel oxides under low temperature. J Hazard Mater 157:496–502

    CAS  Google Scholar 

  135. Liu Y, Yang S, Hong J, Sun C (2007) Low–temperature preparation and microwave photocatalytic activity study of TiO2–mounted activated carbon. J Hazard Mater 142: 208–215

    CAS  Google Scholar 

  136. Liu X, Zhang Q, Zhang G, Wa R (2008) Application of microwave irradiation in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil. Chemosphere 72: 1655–1658

    CAS  Google Scholar 

  137. Zhihui A, Peng Y, Xiaohua L (2005) Degradation of 4–Chlorophenol by microwave irradiation enhanced advanced oxidation processes. Chemosphere 60:824–827

    Google Scholar 

  138. Park Sh, Kim SJ, Seo SG, Jung SC (2010) Assessment of microwave/UV/O3 in the photo–catalytic degradation of bromothymol blue in aqueous nano TiO2 particles dispersions. Nanoscale Res Lett 5:1627–1632

    CAS  Google Scholar 

  139. Horikoshi S, Hidaka S, Serpone N (2002) Environmental remediation by an integrated microwave/UV–illumination method. 1. Microwave–assisted degradation of Rhodamine–B dye in aqueous TiO2 dispersions. Environ Sci Technol 36:1357–1366

    CAS  Google Scholar 

  140. Gao Z, Yang S, Ta N, Sun C (2007) Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. J Hazard Mater 145:424–430

    CAS  Google Scholar 

Download references

Acknowledgments

The author expresses his gratitude to all the researchers whose valuable data have been of significance to this chapter, and is also grateful to other colleagues for their constructive criticisms and suggestions. Kind regards are also due to the editors, Prof. S.K. Sharma and Dr. R. Sanghi, for granting the opportunity to contribute a chapter in this comprehensive book on green technology and wastewater remediation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ackmez Mudhoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mudhoo, A. (2012). Microwave-Assisted Organic Pollutants Degradation. In: Sharma, S., Sanghi, R. (eds) Advances in Water Treatment and Pollution Prevention. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4204-8_7

Download citation

Publish with us

Policies and ethics