Skip to main content

Heavy Metal Removal Through Biosorptive Pathways

  • Chapter
  • First Online:
Advances in Water Treatment and Pollution Prevention

Abstract

In this chapter, biosorption, applied in removing heavy metal ions from wastewater, will be introduced and discussed. A vast array of biological materials, especially bacteria, fungi, algae, and plant leaves and their extraction, have received increasing attention for heavy metal removal and recovery due to their perfect performance in both experimental research and field treatment, low cost, and large available quantities. Through summarizing the published literatures and reports, these progresses in this field involving biosorbents will be briefly reviewed and discussed. Also in this field, recycling economy is a hot and rising topic, for example, to synthesize metallic nanoparticles in the process of wastewater treatment. Although these explorations are still in their infancy of theoretic and experimental phase, the trend leads irresistibly the future of this field to a green and economical one. That is, for the concrete example, a controlled synthesis method will be developed of metallic nanoparticles of well-defined size and shape while treating waste effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang JL, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451. doi:10.1016/j.biotechadv.2006.03.001

    CAS  Google Scholar 

  2. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257. doi:10.1016/j.biortech.2005.12.006

    CAS  Google Scholar 

  3. Patterson JW, Minear R, Gasca E, Petropoulou C (1998) Industrial discharges of metals to water. In: Allen HE, Garrison AW, Luther GW (eds) Metals in surface waters, 3rd edn. Ann Arbor Press, Michigan

    Google Scholar 

  4. Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego

    Google Scholar 

  5. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Progress 11:235–250. doi:10.1021/bp00033a001

    CAS  Google Scholar 

  6. Chen YS, Sun QJ, Chen J, Zhang YY (1997) Research on technology of biosorption of heavy metals. Adv Environ Sci 5:34–43. doi:10.1021/bp00033a001

    Google Scholar 

  7. Chen M, Gan YR (1999) Biosorption of heavy metal. Chem Ind Eng 16:19–25. doi:cnki:ISSN:1004%979533.0.1999%9701%97004

    Google Scholar 

  8. Kratochvil D, Volesky B (1998) Biosorption of Cu from ferruginous wastewater by algae biomass. Water Res 32:2760–2768. doi:10.1016/S0043-1354(98),%2000015-3

    CAS  Google Scholar 

  9. Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300. doi:10.1016/S0167-7799(98),%2001218-9

    CAS  Google Scholar 

  10. Volesky B (1990) Biosorption and biosorbents. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton

    Google Scholar 

  11. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291. doi:10.1016/j.biotechadv.2008.02.002

    CAS  Google Scholar 

  12. Gavrilesca M (2004) Removal of heavy metals from the environmental by biosorption. Eng Life Sci 4:219–232. doi:10.1002/elsc.200420026

    Google Scholar 

  13. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330. doi:10.1016/S0043-1354(03),%2000293-8

    CAS  Google Scholar 

  14. Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216. doi:10.1016/S0304-386X(00),%2000160-2

    CAS  Google Scholar 

  15. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316. doi:10.1016/S0304-386X(96)00059-X

    CAS  Google Scholar 

  16. Kapoor A, Viraraghavan T (1995) Fungi biosorptiondan alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206. doi:10.1016/0960-8524(95)00072-M

    CAS  Google Scholar 

  17. White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeter Biodegr 35:17–40. doi:10.1016/0964-8305(95),%2000036-5

    CAS  Google Scholar 

  18. Vullo DL, Ceretti HM, Daniel MA, Ramırez SAM, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99:5574–5581. doi:10.1016/j.biortech.2007.10.060

    CAS  Google Scholar 

  19. Tsezos M (2001) Biosorption of metals. The experience accumulated and the outlook for technology development. RefDoc. http://cat.inist.fr/?aModele=afficheN%26cpsidt=898441. Accessed 2001

  20. Aksu Z (1998) Biosorption of heavy metals by micro algae in batch and continuous systems. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin

    Google Scholar 

  21. Wang JL, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. doi:10.1016/j.biotechadv.2008.11.002

    Google Scholar 

  22. Hamerlinck Y, Mertens DH (1994) In: Vansant EF (ed) Activated carbon principles in separation technology. Elsevier, New York

    Google Scholar 

  23. Dobrowolski R, Stefaniak E (2000) Study of chromium (VI) adsorption from aqueous solution on to activated carbon. Adsorpt Sci Technol 18:97–106. doi:10.1260/0263617001493314

    CAS  Google Scholar 

  24. Kadirvelu K, Namasivayam C (2003) Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd (II) from aqueous solution. Adv Environ Res 7:471–478. doi:10.1016/S1093-0191(02),%2000018-7

    CAS  Google Scholar 

  25. Gomez-Serrano V, Macias-Garcia A, Espinosa-Mansilla A, Valenzuela-Calahorro A (1998) Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon. Water Res 32:1–4. doi:10.1016/S0043-1354(97),%2000203-0

    CAS  Google Scholar 

  26. Benefield LD, Morgan JM (1999) Chemical precipitation. In: Letterman RD (ed) Water quality and treatment. McGraw-Hill, New York

    Google Scholar 

  27. US Environmental Protection Agency (EPA) (2000) Chemical precipitation. US EPA, Washington, DC, EPA832-F-00–018

    Google Scholar 

  28. Tunay O (2003) Developments in the application of chemical technologies to wastewater treatment. Water Sci Technol 48:43–52

    CAS  Google Scholar 

  29. Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39:135–138. doi:10.1016/S0273-1223(99),%2000304-2

    CAS  Google Scholar 

  30. Juttner K, Galla U, Schmieder H (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim Acta 45:2575–2594. doi:10.1016/S0013-4686(00)00339-X

    CAS  Google Scholar 

  31. Yang XJ, Fane AG, Mac Naughton S (2001) Removal and recovery of heavy metals from wastewater by supported liquid membranes. Water Sci Technol 43:341–348

    CAS  Google Scholar 

  32. Bose P, Bose MA, Kumar S (2002) Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc, and cyanide. Adv Environ Res 7:179–195. doi:10.1016/S1093-0191(01),%2000125-3

    CAS  Google Scholar 

  33. Wingenfelder U, Hansen C, Furrer G, Schulin R (2005) Removal of heavy metals from mine water by natural zeolites. Environ Sci Technol 39:4606–4613. doi:10.1021/es048482s

    CAS  Google Scholar 

  34. Jain A, Sharma VK, Mbuya OS (2009) Removal of arsenic by Fe (VI), Fe (VI)/Fe (III), and Fe (VI)/Al (III) salts: effect of pH and anions. J Hazard Mater 169:339–344. doi:10.1016/j.jhazmat.2009.03.101

    CAS  Google Scholar 

  35. Jiang JQ (2007) Research progress in the use of ferrate (VI) for the environmental remediation. J Hazard Mater 146:617–623. doi:10.1016/j.jhazmat.2007.04.075

    CAS  Google Scholar 

  36. Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98. doi:10.1016/j.cej.2006.01.015

    CAS  Google Scholar 

  37. Ahn KH, Song KG, Cha HY, Yeom IT (1999) Removal of ions in nickel electroplating rinse water using low-pressure nanofiltration. Desalination 122:77–84. doi:10.1016/S0011-9164(99),%2000029-6

    CAS  Google Scholar 

  38. Juang RS, Shiau RC (2000) Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J Membr Sci 165:159–167. doi:10.1016/S0376-7388(99),%2000235-5

    CAS  Google Scholar 

  39. Ujang Z, Anderson GK (1996) Application of low-pressure reverse osmosismembranefor Zn2+ and Cu2+ removal from wastewater. Water Sci Technol 34:247–253. doi:10.1016/S0273-1223(96),%2000811-6

    CAS  Google Scholar 

  40. Tzanetakis N, Taama WM, Scott K, Jachuck RJJ, Slade RS, Varcoe J (2003) Comparative performance of ion exchange membrane for electrodialysis of nickel and cobalt. Sep Purif Technol 30:113–127. doi:10.1016/S1383-5866(02),%2000139-9

    CAS  Google Scholar 

  41. Fernández Y, Maraón E, Castrillón L, Vázquez I (2005) Removal of Cd and Zn from inorganic industrial waste leachate by ion exchange. J Hazard Mater 126:169–175. doi:10.1016/j.jhazmat.2005.06.016

    Google Scholar 

  42. Lee IH, Kuan YC, Chern JM (2006) Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin. J Hazard Mater 138:549–559. doi:10.1016/j.jhazmat.2006.05.090

    CAS  Google Scholar 

  43. Juang RS, Kuo HC, Liu FY (2006) Ion exchange recovery of Ni (II) from simulated electroplating waste solutions containing anionic ligands. J Hazard Mater 128:53–59. doi:10.1016/j.jhazmat.2005.07.027

    CAS  Google Scholar 

  44. Sapari N, Idris A, Hisham N (1996) Total removal of heavy metal from mixed plating rinse wastewater. Desalination 106:419–422. doi:10.1016/S0011-9164(96),%2000139-7

    CAS  Google Scholar 

  45. Gode F, Pehlivan E (2003) A comparative study of two chelating ion exchange resins for the removal of chromium (III) from aqueous solution. J Hazard Mater 100:231–243. doi:10.1016/S0304-3894(03),%2000110-9

    CAS  Google Scholar 

  46. lvarez-Ayuso EA, Garcia-Sanchez A, Querol X (2003) Purification of metal electroplating wastewaters using zeolites. Water Res 37:4855–4862. doi:10.1016/j.watres.2003.08.009

    Google Scholar 

  47. Papadopoulos A, Fatta D, Parperis K, Mentzis A, Harambous KJ, Loizidou M (2004) Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Sep Purif Technol 39:181–188. doi:10.1016/j.seppur.2003.10.010

    CAS  Google Scholar 

  48. Keane MA (1998) The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers. Colloid Surf A 138:11–20. doi:10.1016/S0927-7757(97),%2000078-2

    CAS  Google Scholar 

  49. Ali AA, Bishtawi RE (1997) Removal of lead and nickel ions using zeolite tuff. J Chem Technol Biotechnol 69:27–34. doi:10.1002/(SICI)1097-4660(199705

    CAS  Google Scholar 

  50. Lin SH, Kiang CD (2003) Chromic acid recovery from waste acid solution by an ion exchange process: equilibrium and column ion exchange modeling. Chem Eng J 92:193–199. doi:10.1016/S1385-8947(02),%2000140-7

    CAS  Google Scholar 

  51. Dobrevsky I, Todorova-Dimova M, Panayotova T (1996) Electroplating rinse wastewater treatment by ion exchange. Desalination 108:277–280. doi:10.1016/S0011-9164(97),%2000036-2

    Google Scholar 

  52. Ahmed S, Chughtai S, Keane MA (1998) The removal of cadmium and lead from aqueous solution by ion exchange with Na–Y zeolite. Sep Purif Technol 13:57–64. doi:10.1016/S1383-5866(97),%2000063-4

    CAS  Google Scholar 

  53. Mann H (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC press, Boca Raton

    Google Scholar 

  54. Urrutia MM (1997) General bacterial sorption processes. In: Wase J, Forster C (eds) Biosorbents for metal ions. CRC Press, London

    Google Scholar 

  55. Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115:203–211. doi:10.1016/j.cej.2005.09.023

    CAS  Google Scholar 

  56. Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235. doi:10.1016/S0043-1354(03),%2000418-4

    CAS  Google Scholar 

  57. Choi SB, Yun YS (2004) Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnol Lett 26:331–336. doi:10.1023/B:BILE.0000015453.20708.fc

    CAS  Google Scholar 

  58. Lu WB, Shi JJ, Wang CH, Chang JS (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86. doi:10.1016/j.jhazmat.2005.10.036

    CAS  Google Scholar 

  59. Chang JS, Law R, Chang CC (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res 31:1651–1658. doi:10.1016/S0043-1354(97),%2000008-0

    CAS  Google Scholar 

  60. Lin CC, Lai YT (2006) Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads. J Hazard Mater 137:99–105. doi:10.1016/j.jhazmat.2006.02.071

    CAS  Google Scholar 

  61. Uslu G, Tanyol M (2006) Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(II) and copper(II) ions onto Pseudomonas putida: effect of temperature. J Hazard Mater 135:87–93. doi:10.1016/j.jhazmat.2005.11.029

    CAS  Google Scholar 

  62. Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32. doi:10.1007/s00216-003-1843-z

    CAS  Google Scholar 

  63. Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y (2004) Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng J 19:127–135. doi:10.1016/j.bej.2003.12.007

    CAS  Google Scholar 

  64. Mameri N, Boudries N, Addour L, Belhocine D, Lounici H, Grib H (1999) Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Res 33:1347–1354. doi:10.1016/S0043-1354(98),%2000349-2

    CAS  Google Scholar 

  65. Incharoensakdi A, Kitjaharn P (2002) Zinc biosorption from aqueous solution by a halotolerant cyanobacterium Aphanothece halophytica. Curr Microbiol 45:261–264. doi:10.1007/s00284-002-3747-0

    CAS  Google Scholar 

  66. Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B Biointerfaces 46:101–107. doi:10.1016/j.colsurfb.2005.10.003

    CAS  Google Scholar 

  67. Puranik PR, Paknikar KM (1997) Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass. J Biotechnol 55:113–124. doi:10.1016/S0168-1656(97),%2000067-9

    CAS  Google Scholar 

  68. Celaya RJ, Noriega JA, Yeomans JH, Ortega LJ, Ruiz-Manriquez A (2000) A biosorption of Zn(II) by Thiobacillus ferrooxidans. Bioprocess Eng 22:539–542. doi:10.1007/s004499900106

    CAS  Google Scholar 

  69. Liu HL, Chen BY, Lan YW, Cheng YC (2004) Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem Eng J 97:195–201. doi:10.1016/S1385-8947(03),%2000210-9

    CAS  Google Scholar 

  70. Nakajima A, Yasuda M, Yokoyama H, Ohya-Nishiguchi H, Kamada H (2001) Copper biosorption by chemically treated Micrococcus luteus cells. World J Microbiol Biotechnol 17:343–347. doi:10.1023/A:1016638230043

    CAS  Google Scholar 

  71. Savvaidis I, Hughes MN, Poole RK (2003) Copper biosorption by Pseudomonas cepacia and other strains. World J Microbiol Biotechnol 19:117–121. doi:10.1023/A:1023284723636

    CAS  Google Scholar 

  72. Beolchini F, Pagnanelli R, Toro L, Veglio F (2006) Ionic strength effect on copper biosorption by Sphaerotilus natans: equilibrium study and dynamic modeling in membrane reactor. Water Res 40:144–152. doi:10.1016/j.watres.2005.10.031

    CAS  Google Scholar 

  73. Ozturk A, Artan T, Ayar A (2004) Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids Surf B Biointerfaces 34:105–111. doi:10.1016/j.colsurfb.2003.11.008

    CAS  Google Scholar 

  74. Loukidou MX, Karapantsios TD, Zouboulis AI, Matis KA (2004) Diffusion kinetic study of cadmiurn (II) biosorption by Aeromonas caviae. J Chem Technol Biotechnol 79:711–719. doi:10.1002/jctb.1043

    CAS  Google Scholar 

  75. Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Tzannetaki EL, Liakopoulou-Kyriakides M (2007) Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Technol 98:2859–2865. doi:10.1016/j.biortech.2006.09.043

    CAS  Google Scholar 

  76. Puranik PR, Chabukswar NS, Paknikar KM (1995) Cadmium biosorption by Streptomyce pimprina waste biomass. Appl Microbiol Biotechnol 43:1118–1121. doi:10.1007/BF00166935

    CAS  Google Scholar 

  77. Selatnia A, Bakhti MZ, Madani A, Kertous L, Mansouri Y (2004) Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 75:11–24. doi:10.1016/j.hydromet.2004.06.005

    CAS  Google Scholar 

  78. Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A (2004) Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Process Biochem 39:1643–1651. doi:10.1016/S0032-9592(03),%2000305-4

    CAS  Google Scholar 

  79. Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorptionand bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435. doi:10.1016/S0045-6535(02),%2000089-9

    CAS  Google Scholar 

  80. Nourbakhsh M, Sag Y, Ozer D, Aksu Z, Kutsal T, Caglar A (1994) A comparative study of various biosorbents for removal of chromium(VI) ions from industrial wastewaters. Process Biochem 29:1–5. doi:10.1016/0032-9592(94),%2080052-9

    CAS  Google Scholar 

  81. Zhou M, Liu YG, Zeng GM, Li X, Xu WH, Fan T (2007) Kinetic and equilibrium studies of Cr(VI) biosorption by dead Bacillus licheniformis biomass. World J Microbiol Biotechnol 23:43–48. doi:10.1007/s11274-006-9191-8

    CAS  Google Scholar 

  82. Sahin Y, Ozturk A (2005) Biosorption of chromium(VI) ions from aqueoussolutionby the bacterium Bacillus thuringiensis. Process Biochem 40:1895–1901. doi:10.1016/j.procbio.2004.07.002

    CAS  Google Scholar 

  83. Ozturk A (2007) Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J Hazard Mater 147:518–523. doi:10.1016/j.jhazmat.2007.01.047

    Google Scholar 

  84. Selatnia A, Madani A, Bakhti MZ, Kertous L, Mansouri Y, Yous R (2004) Biosorption of Ni2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Miner Eng 17:903–911. doi:10.1016/j.mineng.2004.04.002

    CAS  Google Scholar 

  85. de Vargas I, Macaskie LE, Guibal E (2004) Biosorption of palladium and platinum by sulfatereducing bacteria. J Chem Technol Biotechnol 79:49–56. doi:10.1002/jctb.928

    Google Scholar 

  86. Nakajima A, Tsuruta T (2004) Competitive biosorption of thorium and uranium by Micrococcus luteus. J Radioanal Nucl Chem 260:13–18. doi:10.1023/B:JRNC.0000027055.16768.1e

    CAS  Google Scholar 

  87. Gialamouidis D, Mitrakas M, Liakopoulou-Kyriakides M (2010) Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells. J Hazard Mater 182:672–680. doi:10.1016/j.jhazmat.2010.06.084

    CAS  Google Scholar 

  88. Velasquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167:713–716. doi:10.1016/j.jhazmat.2009.01.044

    CAS  Google Scholar 

  89. Fehrmann C, Pohl P (1993) Cadmium adsorption by the non-living biomass of microalgae grown in axenic mass culture. J Appl Phycol 5:555–562. doi:10.1007/BF02184634

    CAS  Google Scholar 

  90. Godlewska-Zyłkiewicz B (2004) Preconcentration and separation procedures for the spectrochemical determination of platinum and palladium. Microchim Acta 147:189–210. doi:10.1007/s00604-004-0234-2

    Google Scholar 

  91. Bag H, Turker AR, Lale M, Tunceli A (2000) Separation and speciation of Cr (III) and Cr (VI) with Saccharomyces cerevisiae immobilized on sepiolite and determination of both species in water by FAAS. Talanta 51:895–902. doi:10.1016/S0039-9140(99),%2000354-9

    CAS  Google Scholar 

  92. Esposito A, Pagnanelli F, Veglio F (2002) pH-related equilibria models for biosorption in singlemetal systems. Chem Eng Sci 57:307–313. doi:10.1016/S0009-2509(01),%2000399-2

    CAS  Google Scholar 

  93. Duran C, Bulut VN, Gundogdu A, Soylak M, Belduz AO, Beris FS (2009) Biosorption of heavy metals by Anoxybacillus gonensis immobilized on Diaion HP-2MG. Sep Sci Technol 44:335–358. doi:10.1080/01496390802437131

    CAS  Google Scholar 

  94. Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel and zinc by algae. Environ Sci Technol 35:4283–4288. doi:10.1021/es010063x

    CAS  Google Scholar 

  95. Aksu Z, Akpinar D (2001) Competitive biosorption of phenol and Cr(VI) from binary mixtures onto dried anaerobic activated sludge. Biochem Eng J 7:183–193. doi:10.1016/S1369-703X(00),%2000126-1

    CAS  Google Scholar 

  96. Hancock IC (1986) The use of Gram-positive bacteria for the removal of metals from aqueous solutions. In: Thompson R (ed) Trace metal removal from aqueous solution. Royal Chemistry Society, London

    Google Scholar 

  97. Sekhar KC, Subramanian S, Modak JM, Natarajan KA (1998) Removal of metal ions using an industrial biomass with reference to environmental control. Int J Miner Process 53:107–120. doi:10.1016/S0301-7516(97),%2000061-6

    CAS  Google Scholar 

  98. Basci N, Kocadagistan E, Kocadagistan B (2004) Biosorption of copper(II) from aqueous solutions by wheat shells. Desalination 164:135–140. doi:10.1016/S0011-9164(04),%2000172-9

    CAS  Google Scholar 

  99. Valdman E, Erijman L, Pessoa FLP, Leite SGF (2001) Continuous biosorption of Cu and Zn by immobilised waste biomass Sargassum sp. Process Biochem 36:869–873. doi:10.1016/S0032-9592(00),%2000288-0

    CAS  Google Scholar 

  100. Singh S, Rai BN, Rai LC (2001) Ni(II) and Cr(VI) sorption kinetics by Microcystis in single and multimetallic systems. Process Biochem 36:1205–1213. doi:10.1016/S0032-9592(01),%2000160-1

    CAS  Google Scholar 

  101. Xie SB, Yang J, Chen C, Zhang XJ, Wang QL, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133. doi:10.1016/j.jenvrad.2007.07.003

    CAS  Google Scholar 

  102. Ozacar M, Sengil IA (2003) Adsorption of reactive dyes on calcined alunite from aqueous solutions. J Hazard Mater 98:211–224. doi:10.1016/S0304-3894(02),%2000358-8

    CAS  Google Scholar 

  103. Song HP, Li XG, Sun JS, Yin XH, Wang YH, Wu ZH (2007) Biosorption equilibrium and kinetics of Au(II1) and Cu(I1) on magnetotactic bacteria. Chin J Chem Eng 15:847–854. doi:10.1016/S1004-9541(08),%2060013-0

    CAS  Google Scholar 

  104. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. doi:10.1016/S0032-9592(98),%2000112-5

    CAS  Google Scholar 

  105. Donmez G, Aksu Z (2002) Removal of chromium(VI) from saline wastewaters by Dunaliella species. Process Biochem 38:751–762. doi:10.1016/S0032-9592(02),%2000204-2

    CAS  Google Scholar 

  106. Bayramoglou G, Celik G, Yalcin E, Yilmaz M, Arica MY (2005) Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. J Hazard Mater 119:219–229. doi:10.1016/j.jhazmat.2004.12.022

    Google Scholar 

  107. Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T (2003) Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresour T10. 10.1016/S0960-8524(03),%2000088-9

    CAS  Google Scholar 

  108. Wang YH, Gao H, Sun JS, Li J, Su YX, Ji YL, Gong CM (2011) Selective reinforced competitive biosorption of Ag (I) and Cu (II) on Magnetospirillum gryphiswaldense. Desalination 270:258–263. doi:10.1016/j.desal.2010.11.053

    CAS  Google Scholar 

  109. Sag Y, Akcael B, Kutsal T (2003) Application of multicomponent adsorption models to the biosorption of Cr(VI), Cu(II), and Cd(II) ions on Rhizopus arrhizus from ternary metal mixtures. Chem Eng Commun 190:797–812. doi:10.1080/00986440302119

    CAS  Google Scholar 

  110. Chen XC, Chen LT, Shi JY, Wu WX, Chen YX (2008) Immobilization of heavy metals by Pseudomonas putida CZ1/goethite composites from solution. Colloids Surf B Biointerfaces 61:170–175. doi:10.1016/j.colsurfb.2007.08.002

    CAS  Google Scholar 

  111. Vieira R, Volesky B (2000) Biosorption: a solution to pollution. Int Microbiol 3:17–24

    CAS  Google Scholar 

  112. Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692. doi:10.1007/s002530051116

    CAS  Google Scholar 

  113. Gadd GM (1990) Biosorption. Chem Ind 13: 421–426. RefDoc. http://cat.inist.fr/?aModele=afficheN%26cpsidt=19367157. Accessed 1990

  114. Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171. doi:10.1146/annurev.mi.43.100189.001051

    CAS  Google Scholar 

  115. BeveridgeTJ HMN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S, Trevors JT (1997) Metal–microbe interactions: contemporary approaches. Adv Microb Physiol 38:177–243. doi:10.1016/S0065-2911(08),%2060158-7

    Google Scholar 

  116. Kretschmer KC, Gardea-Torresdey J, Chianelli R, Webb R (2002) Determination of copper binding in Anabaena flos-aquae purified cell walls and whole cells by X-ray absorption spectroscopy. Microchem J 71:295–304. doi:10.1016/S0026-265X(02)00022-X

    CAS  Google Scholar 

  117. YeeN BLG, Phoenix VR, Ferris FG (2004) Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782. doi:10.1021/es0346680

    Google Scholar 

  118. Toner B, Manceau A, Marcus MA, Millet DB, Sposito G (2005) Zinc sorption by a bacterial biofilm. Environ Sci Technol 39:8288–8294. doi:10.1021/es050528+

    CAS  Google Scholar 

  119. Chen XC, Shi JY, Chen YX, Xu XH, Xu SY, Wang YP (2006) Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can J Microbiol 52:308–316

    CAS  Google Scholar 

  120. White C, Gadd GM (2000) Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiol Lett 183:313–318. doi:10.1111/j.1574-6968.2000.tb08977.x

    CAS  Google Scholar 

  121. Borrok DM, Fein JB (2005) The impact of ionic strength on the adsorption of protons, Pb, Cd and Sr onto surfaces of Gram negative bacteria: testing non-electrostatic diffuse and triple monolayer models. J Colloid Interface Sci 286:110–126. doi:10.1016/j.jcis.2005.01.015

    CAS  Google Scholar 

  122. Hayashi H, Seiki H, Tsuneda S, Hirata A, Sasaki H (2003) Influence of growth phase on bacterial cell electrokinetic characteristics examined by soft particle electrophoresis theory. J Colloid Interface Sci 264:565–568. doi:10.1016/S0021-9797(03),%2000418-1

    CAS  Google Scholar 

  123. Hetzer A, Daughney CJ, Morgan HW (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl Environ Microbiol 72:4020–4027. doi:10.1128/AEM.00295%9706

    CAS  Google Scholar 

  124. Kapoor A, Viraraghavan T (1997) Fungi as biosorbents. In: Wase J, Forster C (eds) Biosorbents for metal ions. CRC Press, London

    Google Scholar 

  125. Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206. doi:10.1016/0960-8524(95)00072-M

    CAS  Google Scholar 

  126. Cabuk A, Akar T, Tunali S, Gedikli S (2007) Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: equilibrium and mechanism analysis. Chem Eng J 131:293–300. doi:10.1016/j.cej.2006.12.011

    CAS  Google Scholar 

  127. Özer A, Özer D (2003) Comparative study of the biosorption of Pb (II), Ni (II) and Cr (VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100:219–229. doi:10.1016/S0304%973894(03)00109%972

    Google Scholar 

  128. Mapolelo M, Torto N (2004) Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta 64:39–47. doi:10.1016/j.talanta.2003.10.058

    CAS  Google Scholar 

  129. Al-Saraj M, Abdel-Latif MS, El-Nahal I, Baraka R (1999) Bioaccumulation of some hazardous metals by sol-gel entrapped microorganisms. J Non-Cryst Solids 248:137–140. doi:10.1016/S0022-3093(99),%2000306-3

    CAS  Google Scholar 

  130. Goksungur Y, Uren S, Guvenc U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Technol 96:103–109. doi:10.1016/j.biortech.2003.04.002

    Google Scholar 

  131. Bustard M, McHale AP (1998) Biosorption of heavy metals by distillery-derived biomass. Bioprocess Eng 19:351–353. doi:10.1007/s004490050531

    CAS  Google Scholar 

  132. Chen C, Wang JL (2006) Review on biosorption of heavy metal by Saccharomyces cerevisiae. China Biotechnol 26:69–76. doi:cnki:ISSN:1671-8135.0.2006-01-014

    Google Scholar 

  133. Dhankhara R, Hoodaa A (2011) Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32:467–491. doi:10.1080/09593330.2011.572922

    Google Scholar 

  134. Tsezos M (1997) Biosorption of lanthanides, actinides and related materials in biosorbents for metal ions. In: Wase J, Forster C (eds) Biosorbents for metal ions. CRC Press, London

    Google Scholar 

  135. Baysal Z, Çinar E, Bulut Y, Alkan H, Dogru M (2009) Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. J Hazard Mater 161:62–67. doi:10.1016/j.jhazmat.2008.02.122

    CAS  Google Scholar 

  136. Zu YG, Zhao XH, Hu MS, Ren Y, Xiao P, Zhu L, Cao YJ, Zhang Y (2006) Biosorption effects of copper ions on Candida utilis under negative pressure cavitation. J Environ Sci 18:1254–1259. doi:10.1016/S1001-0742(06),%2060071-5

    CAS  Google Scholar 

  137. Yin H, He BY, Lu XY, Peng H, Ye JS, Yang F (2008) Improvement of chromium biosorption by UV–HNO2 cooperative mutagenesis in Candida utilis. Water Res 42:3981–3989. doi:10.1016/j.watres.2008.07.005

    CAS  Google Scholar 

  138. Akhtar K, Akhtar MW, Khalid AM (2008) Removal and recovery of zirconium from its aqueous solution by Candida tropicalis. J Hazard Mater 156:108–117. doi:10.1016/j.jhazmat.2007.12.002

    CAS  Google Scholar 

  139. Muter O, Lubinya I, Millers D, Grigorjeva L, Ventinya E, Rapoport A (2002) Cr(VI) sorption by intact and dehydrated Candida utilis cells in the presence of other metals. Process Biochem 38:123–131. doi:10.1016/S0032-9592(02),%2000065-1

    CAS  Google Scholar 

  140. Deng SB, Ting YP (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39:2167–2177. doi:10.1016/j.watres.2005.03.033

    CAS  Google Scholar 

  141. Holan ZR, Volesky B (1995) Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents. Appl Biochem Biotechnol 53:133–146. doi:10.1007/BF02788603

    CAS  Google Scholar 

  142. Tan TW, Hu B, Su HJ (2004) Adsorption of Ni2+ on amine-modified mycelium of Penicillium chrysogenum. Enzyme Microb Technol 35:508–513. doi:10.1016/j.enzmictec.2004.08.035

    CAS  Google Scholar 

  143. Fan T, Liu YG, Feng BY, Zeng GM, Yang CP, Zhou M, Zhou HZ, Tan ZF, Wang X (2008) Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. J Hazard Mater 160:655–661. doi:10.1016/j.jhazmat.2008.03.038

    CAS  Google Scholar 

  144. Li XM, Liao DX, Xu XQ, Yang Q, Zeng GM, Zheng W, Guo L (2008) Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within loofa sponge. J Hazard Mater 159:610–615. doi:10.1016/j.jhazmat.2008.02.068

    CAS  Google Scholar 

  145. Say R, Yılmaz N, Denizli A (2003) Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Sep Sci Technol 38:2039–2053. doi:10.1081/SS-120020133

    CAS  Google Scholar 

  146. Say R, Yilmaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650. doi:10.1260/026361703772776420

    CAS  Google Scholar 

  147. Shah MP, Vora SB, Dave SR (1999) Evaluation of potential use of immobilized Penicillium griseofulvum in bioremoval of copper. Process Metall 9:227–235. doi:10.1016/S1572-4409(99),%2080112-6

    Google Scholar 

  148. Dursun AY, Uslu G, Tepea O, Cuci Y, Ekiz HI (2003) A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochem Eng J 15:87–92. doi:10.1016/S1369-703X(02),%2000187-0

    CAS  Google Scholar 

  149. Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104. doi:10.1016/S0960-8524(98),%2000192-8

    CAS  Google Scholar 

  150. Gulati R, Saxena RK, Gupta R (2002) Fermentation waste of Aspergillus terreus: a potential copper biosorbent. World J Microbiol Biotechnol 18:397–401. doi:10.1023/A:1015540921432

    CAS  Google Scholar 

  151. Dias MA, Lacerda ICA, Pimentel PF, de Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34:46–50. doi:10.1046/j.1472-765x.2002.01040.x

    CAS  Google Scholar 

  152. Gadd GM, White C (1992) Removal of thorium from simulated acid process streams by fungal biomass—potential for thorium desorption and reuse of biomass and desorbent. J Chem Technol Biotechnol 55:39–44. doi:10.1002/jctb.280550107

    CAS  Google Scholar 

  153. Naja G, Mustin C, Berthelin J, Volesky B (2005) Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J Colloid Interface Sci 292:537–543. doi:10.1016/j.jcis.2005.05.098

    CAS  Google Scholar 

  154. Bhattacharyya S, Pal TK, Basumajumdar A, Banik AK (2002) Biosorption of heavy metals by Rhizopus arrhizus and Aspergillus niger. J Indian Chem Soc 79:747–750

    CAS  Google Scholar 

  155. Brady JM, Tobin JM (1995) Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme Microb Technol 17:791–796. doi:10.1016/0141-0229(95)00142-R

    CAS  Google Scholar 

  156. Kogej A, Pavko A (2001) Comparison of Rhizopus nigricans in a pelleted growth form with some other types of waste microbial biomass as biosorbents for metal ions. World J Microbiol Biotechnol 17:677–685. doi:10.1023/A:1012901224684

    CAS  Google Scholar 

  157. Arica MY, Kacar Y, Genc O (2001) Entrapment of white-rot fungus Trametes versicolor in Caalginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresour Technol 80:121–129. doi:10.1016/S0960-8524(01),%2000084-0

    CAS  Google Scholar 

  158. Bayramoglu G, Denizli A, Bektas S, Arica MY (2002) Entrapment of Lentinus sajorcaju into Caalginate gel beads for removal of Cd (II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchem J 72:63–76. doi:10.1016/S0026-265X(01),%2000151-5

    CAS  Google Scholar 

  159. Zhang YS, Liu WG, Xu M, Zheng F, Zhao MJ (2010) Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass. J Hazard Mater 178:1085–1093. doi:10.1016/j.jhazmat.2010.02.051

    CAS  Google Scholar 

  160. Mungasavalli DP, Viraraghavan T, Jin YC (2007) Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloids Surf A Physicochem Eng Asp 301:214–223. doi:10.1016/j.colsurfa.2006.12.060

    CAS  Google Scholar 

  161. Park D, Yun YS, Park JM (2005) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem 40:59–2565. doi:10.1016/j.procbio.2004.12.002

    Google Scholar 

  162. Saygideger S, Gulnaz O, Istifli ES, Yucel N (2005) Adsorption of Cd (II), Cu (II) and Ni (II) ions by Lemna minor L.: effect of physicochemical environment. J Hazard Mater 126:96–104. doi:10.1016/j.jhazmat.2005.06.012

    CAS  Google Scholar 

  163. Ahuja P, Gupta R, Saxena RK (1999) Zn2+ biosorption by Oscillatroria anguistissima. Process Biochem 34:77–85. doi:10.1016/S0032-9592(98),%2000072-7

    CAS  Google Scholar 

  164. Padmavathy V, Vasudevan P, Dhingra SC (2003) Biosorption of nickel(II) ions on baker’s yeast. Process Biochem 38:1389–1395. doi:10.1016/S0032-9592(02),%2000168-1

    CAS  Google Scholar 

  165. Vasudevan P, Padmavathy V, Dhingra SC (2003) Kinetics of biosorption of cadmium on baker’s yeast. Bioresour Technol 89:281–287. doi:10.1016/S0960-8524(03),%2000067-1

    CAS  Google Scholar 

  166. Tewari N, Vasudevan P, Guha BK (2005) Study of biosorption of Cr(VI) by Mucor hiemalis. Biochem Eng J 23:185–192. doi:10.1016/j.bej.2005.01.011

    CAS  Google Scholar 

  167. Tunali S, Kiran I, Akar T (2005) Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner Eng 18:681–689. doi:10.1016/j.mineng.2004.11.002

    CAS  Google Scholar 

  168. Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ Pollut 104:421–427. doi:10.1016/S0269-7491(98),%2000174-2

    CAS  Google Scholar 

  169. Bai RS, Abraham TE (2001) Biosorption of Cr (VI) from aqueous solution by Rhizopus nigrican. Bioresour Technol 79:73–81. doi:10.1016/S0960-8524(00),%2000107-3

    Google Scholar 

  170. Sag Y, Aktay Y (2002) Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan and Rhizopus arrhizus. Biochem Eng J 12:143–153. doi:10.1016/S1369-703X(02),%2000068-2

    CAS  Google Scholar 

  171. Sag Y, Aktay Y (2000) Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochem 36:157–173. doi:10.1016/S0032-9592(00),%2000200-4

    CAS  Google Scholar 

  172. Akar T, Tunali S (2006) Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresour Technol 97:1780–1787. doi:10.1016/j.biortech.2005.09.009

    CAS  Google Scholar 

  173. Dai SH, Wei DZ, Zhou DQ, Jia CY, Wang YG, Liu WG (2008) Removing cadmium from electroplating wastewater by waste Saccharomyces cerevisiae. Trans Nonferr Metal Soc China 18:1008–10013. doi:10.1016/S1003-6326(08),%2060173-9

    CAS  Google Scholar 

  174. Deng SB, Ting YP (2005) Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption. Langmuir 21:5940–5948. doi:10.1021/la047349a

    CAS  Google Scholar 

  175. Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell walls of Bacillus subtilis. J Bacteriol 141:876–887

    CAS  Google Scholar 

  176. Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra M (2000) Microbial biosorbents: meetings challenges of heavy metals pollution in aqueous solution. Curr Sci 78:967–973. doi:10.1517/13543784.13.4.373

    CAS  Google Scholar 

  177. Strandberg GW, Shumate SE, Parrott JR (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245, PMCID:PMC243671

    CAS  Google Scholar 

  178. Farkas V (1980) Biosynthesis of cell wall of fungi. Microbiol Rev 44:117–141, PMCID: PMC281469

    Google Scholar 

  179. Muzzarelli RA, Tanfari F (1982) The chelating ability of chitinous material from Aspergillus niger, Streptomyces, Mucor rouxii, Phycomyces blakeseanus and Choamephora curcurnitium. In: Mirano S, Tokura S (eds) Chitin and Chitiosan. Japanese Society of Chitin and Chitiosan, Sapporo

    Google Scholar 

  180. Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604. doi:10.1002/bit.260230309

    CAS  Google Scholar 

  181. Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanism and influence of pH. Appl Microbiol Biotechnol 37:399–403. doi:10.1007/BF00211001

    CAS  Google Scholar 

  182. Liu YG, Fan T, Zeng GM, Li X (2006) Removal of cadmium and zinc ions from aqueous solution by living Aspergillus niger. Trans Nonferr Metal Soc China 16:681–686. doi:10.1016/S1003-6326(06),%2060121-0

    CAS  Google Scholar 

  183. Dursun AY (2006) A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochem Eng J 28:187–195. doi:10.1016/j.bej.2005.11.003

    CAS  Google Scholar 

  184. Wang JS, Hu XJ, Xie SB, Bao ZL (2010) Biosorption of uranium (VI) by immobilized Aspergillus fumigatus beads. J Environ Radioact 101:504–508, 10.1016/j.jenvrad.2010.03.002

    CAS  Google Scholar 

  185. Aksu Z (2001) Equilibrium and kinetic modelling of cadmium (II) biosorption by C. Vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294. doi:10.1016/S1383-5866(00),%2000212-4

    CAS  Google Scholar 

  186. Bhainsa KC, D’Souza SF (2009) Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass. J Hazard Mater 165:670–676. doi:10.1016/j.jhazmat.2008.10.033

    CAS  Google Scholar 

  187. Kuyicak N, Volesky B (1990) Biosorption by fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC press, Boca Raton

    Google Scholar 

  188. Rincon J, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2005) Biosorption of heavy metals by chemically-activated alga Fucus vesiculosus. J Chem Technol Biotechnol 80:1403–1407. doi:10.1002/jctb.1342

    CAS  Google Scholar 

  189. Yu Q, Matheickal JT, Yin P (1999) Heavy metal uptake capacities of common marine macro algal biomass. Water Res 33:1534–1537. doi:10.1016/S0043-1354(98),%2000363-7

    CAS  Google Scholar 

  190. Brinza L, Dring MJ, Gavrilescu M (2007) Marine micro- and macro-algal species as biosorbents for heavy metals. Environ Eng Manag J 6:237–251

    CAS  Google Scholar 

  191. Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26:223–235. doi:10.1080/07388550600972153

    CAS  Google Scholar 

  192. Matheickal JT, Iyengar L, Venkobachar C (1991) Sorption and desorption of Cu (II) by Ganoderma lucidum. Water Qual Res J Can 26:187–200

    CAS  Google Scholar 

  193. Fourest E, Canal C, Roux JC (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Muchor miehei, and Pencillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14:325–332. doi:10.1016/0168-6445(94),%2090050-7

    CAS  Google Scholar 

  194. Matheickal JT, Yu Q (1996) Biosorption of lead from aqueous solutions by marine alga Ecklonia radiate. Water Sci Technol 34:1–7. doi:10.1016/S0273-1223(96),%2000780-9

    CAS  Google Scholar 

  195. Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF (2006) Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour Technol 97:2321–2329. doi:10.1016/j.biortech.2005.10.032

    CAS  Google Scholar 

  196. Sari A, Tuzen M (2008) Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 157:448–454. doi:10.1016/j.jhazmat.2008.01.008

    CAS  Google Scholar 

  197. Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res 35:4079–4085. doi:10.1016/S0043-1354(01),%2000138-5

    CAS  Google Scholar 

  198. Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152:407–414. doi:10.1016/j.jhazmat.2007.07.028

    CAS  Google Scholar 

  199. Tuzun I, Bayramoglu G, Alcin YE, Basaran G, Celik G, Arica MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II)ions onto microalgae Chlamydomonas reinhardtii. J Environ Manage 77:85–92. doi:10.1016/j.jenvman.2005.01.028

    CAS  Google Scholar 

  200. Deng LP, Su YY, Su H, Wang XX, Zhu XB (2007) Sorption and desorption of lead(II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225. doi:10.1016/j.jhazmat.2006.09.009

    CAS  Google Scholar 

  201. Ajmal M, Rao RAK, Ahmad R, Ahmad J (2000) Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater. J Hazard Mater B 79:117–131. doi:10.1016/S0304-3894(00)00234-X

    CAS  Google Scholar 

  202. Aksu Z, Kutsal T (1990) A comparative study for biosorption characteristics of heavy metal ions with C. vulgaris. Environ Technol 11:979–987. doi:10.1080/09593339009384950

    CAS  Google Scholar 

  203. Donmez GC, Aksu Z, Ozturk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892. doi:10.1016/S0032-9592(99),%2000005-9

    CAS  Google Scholar 

  204. Khezami L, Capart R (2005) Removal of chromium (VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. J Hazard Mater 123:223–231. doi:10.1016/j.jhazmat.2005.04.012

    CAS  Google Scholar 

  205. Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem 38:89–99. doi:10.1016/S0032-9592(02),%2000051-1

    CAS  Google Scholar 

  206. Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z (2010) Biosorption of nickel (II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies. J Hazard Mater 175:304–310. doi:10.1016/j.jhazmat.2009.10.004

    CAS  Google Scholar 

  207. Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141. doi:10.1016/j.jcis.2004.01.036

    CAS  Google Scholar 

  208. Bishnoi NR, Pant A, Garima (2004) Biosorption of copper from aqueous solution using algal biomass. J Sci Ind Res 63:813–816, ISSN 0022–4456

    CAS  Google Scholar 

  209. Chand S, Agarwal VK, Kumar P (1994) Removal of hexavalent Cr from wastewater by adsorption. Indian J Environ Health 36:151–158, ISSN 0367–827X

    CAS  Google Scholar 

  210. Saravanane R, Sundararajan T, Sivamurthyreddy S (2002) Efficiency of chemically modified low cost adsorbents for the removal of heavy metals from wastewater: a comparative study. Indian J Environ Health 44:78–87

    CAS  Google Scholar 

  211. Deo N, Ali M (1992) Optimization of a new low cost adsorbent in removal of Cr(VI) from wastewater. Indian J Environ Protect 12:828–834

    CAS  Google Scholar 

  212. Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour Technol 98:452–455. doi:10.1016/j.biortech.2006.01.010

    CAS  Google Scholar 

  213. Aravindhan R, Maharshi B, Sreeram KJ (2010) Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic and thermodynamic study. Bioresour Technol 101:1466–1470. doi:10.1016/j.biortech.2009.08.008

    Google Scholar 

  214. Crist DR, Crist RH, Martin JR, Watson JR (1994) Ion exchange systems in proton–metal reaction with algal cell walls. FEMS Microbiol Rev 14:309–314. doi:10.1111/j.1574-6976.1994.tb00104.x

    CAS  Google Scholar 

  215. Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84. doi:10.1016/j.chemosphere.2004.10.005

    CAS  Google Scholar 

  216. Raize O, Argaman Y, Yannail S (2004) Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnol Bioeng 87:451–458. doi:10.1002/bit.20136

    CAS  Google Scholar 

  217. Han X, Wong YS, Tam NFY (2006) Surface complexation mechanism and modeling in Cr (III) biosorption by a microalgal isolate, Chlorella miniata. J Colloid Interface Sci 303:365–371. doi:10.1016/j.jcis.2006.08.028

    CAS  Google Scholar 

  218. Kalyani S, Rao PS (2004) Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere 57:1225–1229. doi:10.1016/j.chemosphere.2004.08.057

    CAS  Google Scholar 

  219. Ajjabiv LC, Chouba L (2009) Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J Environ Manage 90:3485–3489. doi:10.1016/j.jenvman.2009.06.001

    Google Scholar 

  220. Sahmurova A, Türkmenler H (2010) Biosorption kinetics and isotherm studies of Cd(II) by dried Enteromorpha compress macroalgae cells from aqueous solutions. Clean Soil Air Water 38:936–941. doi:10.1002/clen.201000108

    CAS  Google Scholar 

  221. Murugesan GS, Sathishirkumar M, Suaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97:483–487. doi:10.1016/j.biortech.2005.03.008

    CAS  Google Scholar 

  222. Fiol N, Villascusa I, Martinez M, Mirralles N, Poch J, Seralos J (2006) Sorpton of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solutions by olive stone waste. Sep Purif Technol 50:132–140. doi:10.1016/j.seppur.2005.11.016

    CAS  Google Scholar 

  223. Singh A, Mehta SK, Gaur JP (2007) Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World J Microbiol Biotechnol 23:1115–1120. doi:10.1007/s11274-006-9341-z

    CAS  Google Scholar 

  224. Freitas OM, Martins RJE, Delerue-Matos CM, Boaventura RAR (2008) Removal of Cd (II), Zn (II) and Pb (II) from aqueous solutions by brown marine macro algae: kinetic modeling. J Hazard Mater 153:493–501. doi:10.1016/j.jhazmat.2007.08.081

    CAS  Google Scholar 

  225. Lodeiro P, Cordero B, Grille Z, Herrero R, Sastre de Vicente ME (2004) Physicochemical studies of cadmium (II) biosorption by the invasive alga in Europe, Sargassum muticum. Biotechnol Bioeng 88:237–247. doi:10.1002/bit.20229

    CAS  Google Scholar 

  226. Cruz CCV, da Costa ACA, Henriques CA, Luna AS (2004) Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresour Technol 91:249–257. doi:10.1016/S0960%978524(03)00194%979

    CAS  Google Scholar 

  227. Martins BL, Cruz CCV, Luna AS, Henriques CA (2006) Sorption and desorption of Pb2+ ions by dead Sargassum sp. biomass. Biochem Eng J 27:310–314. doi:10.1016/j.bej.2005.08.007

    CAS  Google Scholar 

  228. Kumar YP, King P, Prasad VSRK (2006) Removal of copper from aqueous solution using Ulva fasciata sp., a marine green algae. J Hazard Mater 137:367–373. doi:10.1016/j.jhazmat.2006.02.010

    CAS  Google Scholar 

  229. Weber WJ, Morris JC (1962) Advance in water pollution research: removal of biological resistant pollutions from wastewater by adsorption. In: Proceedings of the international conference on water pollution symposium. Pergamon Press, Oxford

    Google Scholar 

  230. Sharma A, Bhattacharyya KG (2005) Azadirachta indica (neem) leaf power as a biosorbent for removal of Cd (II) from aqueous medium. J Hazard Mater B 125:102–112. doi:10.1016/j.jhazmat.2005.05.012

    CAS  Google Scholar 

  231. Benaissa H, Elouchdi MA (2007) Removal of copper ions from aqueous solutions by dried sunflower leaves. Chem Eng Process 46:614–622. doi:10.1016/j.cep.%202006.08.006

    CAS  Google Scholar 

  232. Salim R, Al-Subu M (2008) Efficiency of removal of cadmium from aqueous solutions by plant leaves and the effects of interaction of combinations of leaves on their removal efficiency. J Environ Manage 87:521–532. doi:10.1016/j.jenvman.2007.01.028

    CAS  Google Scholar 

  233. Al Rmalli SW, Dahmani AA, Abuein MM, Gleza AA (2008) Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). J Hazard Mater 152:955–959. doi:10.1016/j.jhazmat.2007.07.111

    CAS  Google Scholar 

  234. Sangi M, Shahmoradi A, Zolgharnein J, Azimi GH, Ghorbandoost M (2008) Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. J Hazard Mater 155:513–522. doi:10.1016/j.jhazmat.2007.11.110

    CAS  Google Scholar 

  235. Zolgharnein J, Shamoradi A, Sangi MR (2008) Optimization of Pb (II) biosorption by Robinia tree leaves using statistical design of experiments. Talanta 76:528–532. doi:10.1016/j.talanta.2008.03.039

    CAS  Google Scholar 

  236. Zolgharnein J, Shahmoradi A (2010) Characterization of sorption isotherms, kinetic models, and multivariate approach for optimization of Hg (II) adsorption onto Fraxinus tree leaves. J Chem Eng Data 55:5040–5049. doi:10.1021/je1006218

    CAS  Google Scholar 

  237. Sayrafi O, Salim R, Sayrafi SA (1996) Removal of cadmium from polluted water using decaying leaves: effects of type of leaves and of concentration of cadmium. J Environ Sci Health A 31:2503–2513. doi:10.1080/10934529609376506

    Google Scholar 

  238. Salim R, Al-Subu M, Qashoa S (1994) Removal of lead from polluted water using decaying plant leaves. J Environ Sci Health A 29:2087–2114. doi:10.1080/10934529409376166

    Google Scholar 

  239. Al-Subu M, Salim R, Abu-Shqair I, Swaileh K (2001) Removal of dissolved copper from polluted water using plant leaves: effects of acidity and plant species. Rev Int Contam Ambient 17:91–96

    CAS  Google Scholar 

  240. Salim R (1988) Removal of nickel (II) from polluted water using decaying leaves-effects of pH and type of leaves. J Environ Sci Health A 23:183–197, 321–334. doi: 10.1080/10934528809375403

    Google Scholar 

  241. Salim R, Robinson JW (1985) Removal of dissolved aluminum released by acid rain using decaying leaves. J Environ Sci Health A 20:701–734. doi:10.1080/10934528509375253

    Google Scholar 

  242. Fiol N, Villaescusa I, Martínez M, Miralles N, Poch J, Serarols J (2006) Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Sep Purif Technol 50:132–140. doi:10.1016/j.seppur.2005.11.016

    CAS  Google Scholar 

  243. Özer A, Özer D (2003) Comparative study of the biosorption of Pb (II), Ni (II) and Cr (VI) ion onto S. cerevisiae: determination of biosorption heats. J Hazard Mater B 100:219–228. doi:10.1016/S0304%973894(03)00109%972

    Google Scholar 

  244. Vianna LNL, Andrade MC, Nicoli JR (2000) Screening of waste biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations forremoval of Cu, Zn and Cd by biosorption. World J Microbiol Biotechnol 16:437–440. doi:10.1023/A:1008953922144

    CAS  Google Scholar 

  245. Singh KK, Rastogi R, Hasan SH (2005) Removal of Cr (VI) from wastewater using rice bran. J Colloid Interface Sci 290:61–68. doi:10.1016/j.jcis.2005.04.011

    CAS  Google Scholar 

  246. Villaescusa I, Fiol N, Martinez M, Miralles N, Poch J, Serarols J (2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res 38:992–1002. doi:10.1016/j.watres.2003.10.040

    CAS  Google Scholar 

  247. Bulut Y, Baysal Z (2006) Removal of Pb (II) from wastewater using wheat bran. J Environ Manage 78:107–113. doi:10.1016/j.jenvman.2005.03.010

    CAS  Google Scholar 

  248. Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL (2001) The removal of heavy metals from aqueous solutions by sawdust adsorption: removal of lead and comparison of its adsorption with copper. J Hazard Mater 84:83–94. doi:10.1016/S0304-3894(01),%2000198-4

    CAS  Google Scholar 

  249. Ho YS, Huang CT, Huang HW (2002) Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem 37:1421–1430. doi:10.1016/S0032-9592(02),%2000036-5

    CAS  Google Scholar 

  250. Wang R, Liao X, Shi B (2005) Adsorption behaviors of Pt(II) and Pd(II) on collagen fibre immobilized bayberry tannin. Ind Eng Chem Res 44:4221–4226. doi:10.1021/ie049069w

    CAS  Google Scholar 

  251. Ahluwalia SS, Goyal D (2005) Removal of heavy metals from waste tea leaves from aqueous solution. Eng Life Sci 5:158–162. doi:10.1002/elsc.200420066

    CAS  Google Scholar 

  252. Singh KK, Talat M, Hasan SH (2006) Removal of lead from aqueous solutions by agricultural waste maize bran. Bioresour Technol 97:2124–2130. doi:10.1016/j.biortech.2005.09.016

    CAS  Google Scholar 

  253. Reddya D, Harinatha Y, Seshaiah K (2010) Biosorption of Pb (II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chem Eng J 162:626–634. doi:10.1016/j.cej.2010.06.010

    Google Scholar 

  254. Qaiser S, Saleemi AR, Umar M (2009) Biosorption of lead from aqueous solution by Ficus religiosa leaves: batch and column study. J Hazard Mater 166:998–1005. doi:10.1016/j.jhazmat.2008.12.003

    CAS  Google Scholar 

  255. Al-Masri MS, Amin Y (2010) Biosorption of cadmium, lead, and uranium by powder of poplar leaves and branches. Appl Biochem Biotechnol 160:976–987. doi:10.1007/s12010-009-8568-1

    CAS  Google Scholar 

  256. Aksu Z, Donmez G (2001) Comparison of copper (II) biosorptive properties of live and treated Candida sp. J Environ Sci Health A 36:367–381. doi:10.1081/ESE-100102928

    CAS  Google Scholar 

  257. Yang J, Volesky B (1999) Sorption of copper on algae and fungi. Environ Sci Technol 33:751–757

    CAS  Google Scholar 

  258. Aksu Z, Kutsal T, Gun S, Haciosmanoglu N, Gholaminejad M (1991) Investigation of biosorption of Cu(II), Ni(II) and Cr(VI) ions to activated sludge bacteria. Environ Technol 12:915–921. doi:10.1080/09593339109385086

    CAS  Google Scholar 

  259. Zolgharnein J, Shahmoradi A (2010) Adsorption of Cr (VI) onto elaeagnus tree leaves: statistical optimization, equilibrium modeling, and kinetic studies. J Chem Eng Data 55:3428–3437. doi:10.1021/je100157y

    CAS  Google Scholar 

  260. Tian JS, Li Y, Li JL (2008) High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl Microbiol Biotechnol 9:389–397. doi:10.1007/s00253-008-1453-y

    Google Scholar 

  261. Song HP, Li XG, Sun JS, Xu XM, Han X (2008) Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere 72:616–621. doi:10.1016/j.chemosphere.2008.02.064

    CAS  Google Scholar 

  262. Krishna MVB, Chandrasekaran K, Rao SV, Karunasagar D, Arunachalam J (2005) Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS. Talanta 65:135–142. doi:10.1016/j.talanta.2004.05.051

    Google Scholar 

  263. Godlewska-Zyłkiewicz B, Kozłowska M (2005) Solid phase extraction using immobilized yeast Saccharomyces cerevisiae for determination of palladium in road dust. Anal Chim Acta 539:61–67. doi:10.1016/j.aca.2005.02.051

    Google Scholar 

  264. Bag H, Lale M, Turker AR (1999) Determination of Cu, Zn and Cd in water by FAAS after preconcentration by baker’s yeast (Saccharomyces cerevisiae) immobilized on sepiolite. Fresenius J Anal Chem 363:224–230. doi:10.1007/s002160051178

    CAS  Google Scholar 

  265. Menegario AA, Smichowski P, Polla G (2005) On-line preconcentration and speciation analysis of Cr(III) and Cr(VI) using baker’s yeast cells immobilised on controlled pore glass. Anal Chim Acta 546:244–250. doi:10.1016/j.aca.2005.05.030

    CAS  Google Scholar 

  266. Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiana: characterization studies. J Hazard Mat B 108:85–94. doi:10.1016/j.jhazmat.2004.01.002

    CAS  Google Scholar 

  267. Bender J, Phillips P (2004) Microbial mats for multiple applications in aquaculture and bioremediation. Bioresour Technol 94:229–238. doi:10.1016/j.biortech.2003.12.016

    CAS  Google Scholar 

  268. Chang WC, Hsu GS, Chiang SM, Su MC (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresour Technol 97:1503–1508. doi:10.1016/j.biortech.2005.06.011

    CAS  Google Scholar 

  269. Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279. doi:10.1016/S0958-1669(00),%2000095-1

    CAS  Google Scholar 

  270. Liu Y, Xu H, Yang S, Tay J (2003) A general model for biosorption of Cd, Cu, and Zn by aerobic granules. J Biotechnol 102:233–239. doi:10.1016/S0168-1656(03),%2000030-0

    CAS  Google Scholar 

  271. Han R, Zhang J, Zou W, Xiao H, Shi J, Liu H (2006) Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column. J Hazard Mater 133:262–268. doi:10.1016/j.jhazmat.2005.10.019

    CAS  Google Scholar 

  272. Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005) Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulate in a packed column. Chemosphere 60:419–426. doi:10.1016/j.chemosphere.2004.12.016

    CAS  Google Scholar 

  273. Godlewska-Zylkiewicz B (2003) Biosorption of platinum and palladium for their separation preconcentration prior to graphite furnace atomic absorption spectrometric determination. Spectrochim Acta B Atom Spectrosc 58:1531–1540. doi:10.1016/S0584-8547(03),%2000076-4

    Google Scholar 

  274. Azila YY, Mashitah MD, Bhatia S (2008) Process optimization studies of lead (Pb(II)) biosorption onto immobilized cells of Pycnoporus sanguineus using response surface methodology. Bioresour Technol 99:8549–8552. doi:10.1016/j.biortech.2008.03.056

    Google Scholar 

  275. Hu J, Chen GH, Irene MCL (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536. doi:10.1016/j.watres.2005.05.051

    CAS  Google Scholar 

  276. Li HD, Li Z, Liu T, Xiao X, Peng ZH, Deng L (2008) A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads. Bioresour Technol 99:6271–6279. doi:10.1016/j.biortech.2007.12.002

    CAS  Google Scholar 

  277. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Am Chem Soc 126:8648–8649. doi:10.1021/ja047846d

    CAS  Google Scholar 

  278. Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545. doi:10.1016/j.jhazmat.2009.12.066

    CAS  Google Scholar 

  279. Riddin T, Gericke M, Whiteley CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzyme Microb Technol 46:501–505. doi:10.1016/j.enzmictec.2010.02.006

    CAS  Google Scholar 

  280. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488. doi:10.1038/nmat1152

    CAS  Google Scholar 

  281. Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572. doi:10.1021/cm048292g

    CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the financial support from the National Natural Science Foundation, P.R. China (Project No. 21076155). We herein express our thankfulness to the Analysis Center of Tianjin University for Product Purity testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsheng Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, J., Ji, Y., Cai, F., Li, J. (2012). Heavy Metal Removal Through Biosorptive Pathways. In: Sharma, S., Sanghi, R. (eds) Advances in Water Treatment and Pollution Prevention. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4204-8_5

Download citation

Publish with us

Policies and ethics