Skip to main content

Special Configuration of Mechanisms

  • Chapter
  • First Online:
Theory of Parallel Mechanisms

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 6))

  • 2684 Accesses

Abstract

This chapter resumptively introduces our studies on the singularity of parallel mechanisms for the Stewart manipulator and the 3-RPS mechanism. It analyzes the singular kinematic principle and the singularity classification based on the kinematic status of the machinery and the linear-complex and focuses on discussing the structure and property of the singularity loci of 3/6- and 6/6-Stewart platform for special and general orientations. The singularity of the 3-RPS mechanism is also discussed in the latter parts. Many interesting properties, such as the remarkable intersection of all six segments of the six legs of the 6/6-Stewart platform with one common line, are discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We prefer to adopt the term “special configuration” instead of “singularity” because the latter originates from mathematics, whereas the former originates from mechanical engineering and its meaning in physics is clear and can easily be understood by mechanical students and engineers. However, the term “singularity” is also used in the paper a number of times to simplify the expression.

References

  1. Hunt KH (1983) Structural kinematics of in-parallel-actuated robot-arms. ASME J Mech Trans Autom Des 105:705–712

    Article  Google Scholar 

  2. Fichter EF (1986) A Stewart platform-based manipulator: general theory and practical construction. Int J Robot Res 5:157–182

    Article  Google Scholar 

  3. Huang Z, Qu YY (1987) The analysis of the special configuration of the spatial parallel manipulators. The 5th national mechanism conference, Lu Shan, China, pp 1–7

    Google Scholar 

  4. Merlet JP (1989) Singular configurations of parallel manipulators and Grassmann geometry. Int J Robot Res 8:45–56

    Article  Google Scholar 

  5. Collins CL, Long GL (1995) The singularity analysis of an in-parallel hand controller for force-reflected teleoperation. IEEE Trans Robot Autom 11(5):661–669

    Article  Google Scholar 

  6. Hao F, McCarthy JM (1998) Conditions for line-based singularities in spatial platform manipulator. J Robot Syst 15(1):43–55

    Article  MATH  Google Scholar 

  7. Gosselin C, Angeles J (1990) Singularity analysis of closed-loop kinematic chains. IEEE Trans Robot Autom 6:281–290

    Article  Google Scholar 

  8. Zlatanov D, Fenton RG, Benhabib B (1995) A unifying framework for classification and interpretation of mechanism singularities. ASME J Mech Des 117:566–572

    Article  Google Scholar 

  9. Zlatanov D, Bonev IA, Gosselin CM (2002) Constraint singularities of parallel mechanisms. In: Proceedings of the 2002 I.E. international conference on robotics and automation, Washington, DC, pp 496–502

    Google Scholar 

  10. Ma O, Angeles J (1991) Architecture singularity of platform manipulators. IEEE international conference on robotics and automation, Sacramento, USA, pp 1542–1547

    Google Scholar 

  11. Kong XW (1998) Generation of 6-SPS parallel manipulators. In: Proceedings of the 1998 ASME Design Engineering Technical conference, Atlanta, USA, 98DETC/MECH-5952

    Google Scholar 

  12. McAree PR, Daniel RW (1999) An explanation of never-special assembly changing motions for 3–3 parallel manipulators. Int J Robot Res 18(6):556–574

    Article  Google Scholar 

  13. Karger A, Husty M (1998) Architecture singular parallel manipulators. In: Lenarcic J, Husty M (eds) Proceedings of ARK’98, Strobl, Austria, pp 445–454

    Google Scholar 

  14. Karger A (2001) Singularities and self-motions of equiform platforms. Mech Mach Theory 36(7):801–805

    Article  MathSciNet  MATH  Google Scholar 

  15. Kong X, Gosselin CM (2002) Generation of architecturally singular 6-SPS parallel manipulators with linearly related planar platforms. Electr J Comp Kinemat (EJCK) 1(1), Paper No. 7

    Google Scholar 

  16. Chan VK, Ebert-Uphoff I (2000) Investigation of the deficiencies of parallel manipulators in singular configurations through the Jacobian nullspace. In: Proceedings of IEEE international conference on robotics and automation, Seoul, Korea

    Google Scholar 

  17. Di Gregorio R (2004) Properties of the SX-YS-ZS structures and singularity determination in parallel manipulators which generate those structures. In: Proceedings of DETC’04: ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 28 Sept–2 Oct 2004, Salt Lake City, UT, USA

    Google Scholar 

  18. Sefrioui J, Gosselin C (1994) Étude et représentation des lieux de singularité des manipulateurs parallèles sphériques à trois degrés de liberté avec actionneurs prismatiques. Mech Mach Theory 29:559–579

    Article  Google Scholar 

  19. Sefrioui J, Gosselin C (1995) On the quadratic nature of the singularity curves of planar three-degree-of-freedom parallel manipulators. Mech Mach Theory 30:533–551

    Article  Google Scholar 

  20. Wang J, Gosselin CM (1996) Kinematic analysis and singularity loci of spatial four-degree-of-freedom parallel manipulators. In: Proceedings of the 1996 ASME design engineering technical conference and computers in engineering conference, San Diego, CA, USA

    Google Scholar 

  21. Wang J, Gosselin C (1997) Kinematic analysis and singularity representation of spatial five-degree-of-freedom parallel mechanisms. J Robot Syst 14:851–869

    Article  MATH  Google Scholar 

  22. Collins CL, McCarthy JM (1997) The singularity loci of two triangular parallel manipulator. IEEE ICAR 97’, Monterey, CA, 7–9 July, pp 473–478

    Google Scholar 

  23. Collins CL, McCarthy JM (1998) The quartic singularity surfaces of planar platforms in the Clifford algebra of the projective plane. Mech Mach Theory 33(7):931–944

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang GZ (1998) Singularity analysis of a class of the 6-6 Stewart platforms. In: Proceedings of DETC’98 1998 ASME Design Engineering Technical Conference, Atlanta, GA, USA

    Google Scholar 

  25. Di Gregorio R (2001) Analytic formulation of the 6-3 fully-parallel manipulator’s singularity determination. Robotica 19:663–667

    Google Scholar 

  26. Di Gregorio R (2002) Singularity-locus expression of a class of parallel mechanisms. Robotica 20:323–328

    Google Scholar 

  27. Mayer St-Onge B, Gosselin C (2000) Singularity analysis and representation of the general Gough-Stewart platform. Int J Robot Res 19(3):271–288

    Article  Google Scholar 

  28. Huang Z, Zhao Y, Wang J et al (1999) Kinematic principle and geometrical condition of general-linear-complex special configuration of parallel manipulators. Mech Mach Theory 34:1171–1186

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang Z, Chen LH, Li YW (2003) The singularity principle and property of Stewart manipulator. J Robot Syst 20(4):163–176

    Article  MATH  Google Scholar 

  30. Huang Z, Cao Y (2005) Property identification of the singularity loci of a class of Gough-Stewart manipulators. Int J Robot Res 24(8):675–685

    Article  MathSciNet  Google Scholar 

  31. Pernkopf F, Husty ML (2002) Singularity analysis of spatial Stewart-Gough platforms with planar base and platform. In: Proceedings of DETC.02 ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Montreal, Canada, 29 Sept–2 Oct 2002, DETC2002/MECH-34267

    Google Scholar 

  32. Cao Y, Huang Z, Ge QJ (2005) Orientation-singularity and orientation capability analysis of the Stewart-Gough manipulator, ASME 2005 paper DETC2005-84556

    Google Scholar 

  33. Huang Z, Zhao YS, Zhao TS (2006) Advanced spatial mechanism. Higher Education Press, Beijing (in Chinese)

    Google Scholar 

  34. Huang Z, Qu YY (1987) The analysis of the special configuration of the spatial multiple-loop parallel mechanism. The 5th national conference on mechanisms, Lushang, China, pp 1–7

    Google Scholar 

  35. Huang Z, Liu JF, Li YW (2011) On mechanism mobility. Science Press, Beijing

    Google Scholar 

  36. Ball RS (1900) Theory of screw. Cambridge University Press, Cambridge

    Google Scholar 

  37. Hunt KH (1978) Kinematic geometry of mechanisms. Oxford University Press, Oxford

    MATH  Google Scholar 

  38. Ebert-Uphoff I, Lee JK, Lipkin H (2000) Characteristic tetrahedron of wrench singularities for parallel manipulators with three legs. In: Proceedings of a symposium commemorating the legacy, works, and life of Sir Robert Stawell Ball upon the 100th anniversary of “A Treatise on the Theory of Screws” University of Cambridge, Trinity College, Cambridge

    Google Scholar 

  39. Kong X, Gosselin CM (2001) Uncertainty singularity analysis of parallel manipulators based on the instability analysis of structures. Int J Robot Res 20(11):847–856

    Article  Google Scholar 

  40. Sugimoto K, Duffy J (1981) Special configuration of industrial robots. In: Proceedings of the 11th ISIR, Tokyo, Japan, pp 309–316

    Google Scholar 

  41. Lee KM, Shah DK (1988) Kinematic analysis of a three-degree-of-freedom in-parallel actuated manipulator. IEEE J Robot Autom 4(2):354–360

    Article  Google Scholar 

  42. Li YW, Huang Z (2006) The singularity analysis of 3-RPS parallel manipulator, ASME paper DETC2006-99028

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix A

Appendix A

To verify the correctness of the remarkable singularity occurring when six segments associated with the six extensible links of the 6/6-Gough-Stewart manipulator intersect one common line, the singularity point P 1 in Sect. 5.3.2.3 is taken as an example. The corresponding data cited from our calculations are given below, including the coordinates of the 12 vertices of the moving platform and the base platform, the Plücker coordinates of the six line vectors, the instantaneously moving reciprocal screw, and the corresponding reciprocal products.

$$ {{\hbox{C}}_1}:\left( {\begin{array}{llll} { - 1.41421356237309,} & { - 1.41421356237309,} & 0 \end{array}} \right) $$
$$ {{\hbox{C}}_2}:\left( {\begin{array}{llll} {1.41421356237309,} & { - 1.41421356237309,} & 0 \\\end{array} } \right) $$
$$ {{\hbox{C}}_3}:\left( {\begin{array}{llll} {1.93185165257814,} & { - 0.51763809020504,} & 0 \\\end{array} } \right) $$
$$ {{\hbox{C}}_4}:\left( {\begin{array}{llll} {0.51763809020504,} & {1.93185165257814,} & 0 \\\end{array} } \right) $$
$$ {{\hbox{C}}_5}:\left( {\begin{array}{llll} { - 0.51763809020504,} & {1.93185165257814,} & 0 \\\end{array} } \right) $$
$$ {{\hbox{C}}_6}:\left( {\begin{array}{llll} { - 1.93185165257814,} & { - 0.51763809020504,} & 0 \\\end{array} } \right) $$
$$ {{\hbox{B}}_1}:\left( {\begin{array}{llll} { - 2.09129075934452,} & { - 5.55407350116214,} & {1.44888873943360} \\\end{array} } \right) $$
$$ {{\hbox{B}}_2}:\left( {\begin{array}{llll} { - 1.75507495728150,} & { - 4.97173064968147,} & {1.06066017177982} \\\end{array} } \right) $$
$$ {{\hbox{B}}_3}:\left( {\begin{array}{llll} { - 2.88678588817939,} & { - 3.25767686730291,} & {0.53033008588991} \\\end{array} } \right) $$
$$ {{\hbox{B}}_{{4}}}:\left( {\begin{array}{llll} { - 3.63723664069157,} & { - 3.21263249098023,} & {0.72444436971680} \\\end{array} } \right) $$
$$ {{\hbox{B}}_5}:\left( {\begin{array}{llll} { - 4.55579529423526,} & { - 4.80362274864996,} & {1.78510454149662} \\\end{array} } \right) $$
$$ {{\hbox{B}}_6}:\left( {\begin{array}{llll} { - 4.14156034378610,} & { - 5.43100997645331,} & {1.97921882532351} \\\end{array} } \right) $$
$$ {{\$}_1} = {\user2{C}_1}{\user2{B}_1} = \left( \begin{array}{lllllllll} { - 0.15256,} & { - 0.93281,} & 0.32647;\quad {0.46170,} & {0.461699,} & {1.10344} \end{array} \right) $$
$$ {{\$}_2} = {\user2{C}_2}{\user2{B}_2} = \left( {\begin{array}{llll} { - 0.64930,} & { - 0.72883,} & {0.21730;\quad \begin{array}{llll} { - 0.30731,} & { - 0.30730,} & { - 1.94896} \\\end{array} } \\\end{array} } \!\right) $$
$$ {{\$}_3} = {\user2{C}_3}{\user2{B}_3} = \left( {\begin{array}{llll} { - 0.86533,} & { - 0.49206,} & {0.09524;\quad \begin{array}{llll} { - 0.04930,} & { - 0.18398,} & { - 1.39852} \\\end{array} } \\\end{array} } \right) $$
$$ {{\$}_4} = {\user2{C}_4}{\user2{B}_4} = \left( {\begin{array}{llll} { - 0.62457,} & { - 0.77333,} & {0.10890;\quad \begin{array}{llll} {0.21038,} & { - 0.05637,} & {0.80628} \\\end{array} } \\\end{array} } \!\!\right) $$
$$ {{\$}_5} = {\user2{C}_5}{\user2{B}_5} = \left( {\begin{array}{llll} { - 0.50141,} & { - 0.83633,} & {0.22165;\quad \begin{array}{llll} {0.42820,} & {0.11474,} & {1.40157} \\\end{array} } \\\end{array} } \!\!\right) $$
$$ {{\$}_6} = {\user2{C}_6}{\user2{B}_6} = \left( {\begin{array}{llll} { - 0.38500,} & { - 0.85607,} & {0.34484;\quad \begin{array}{llll} {0.17850,} & {0.66619,} & {1.45451} \\\end{array} } \\\end{array} } \!\!\right) $$
$$ {{\$}^m} = \left( {\begin{array}{llll} {0.48296,} & {0.83652,} & { - 0.25882;\quad \begin{array}{llll} {0.50000,} & { - 0.86603,} & { - 1.86603} \!\!\\\end{array} } \\\end{array} } \right) $$
$$ p1 = {{\$}_1} \circ {{\$}^{\user2{m}}} = 0.06939 \times {10^{{ - 16}}} $$
$$ p2 = {{\$}_2} \circ {{\$}^{\user2{m}}} = - 0.13878 \times {10^{{ - 16}}} $$
$$ p3 = {{\$}_3} \circ {{\$}^{\user2{m}}} = 1.939478 \times {10^{{ - 16}}} $$
$$ p4 = {{\$}_4} \circ {{\$}^{\user2{m}}} = - 0.06939 \times {10^{{ - 16}}} $$
$$ p5 = {{\$}_5} \circ {{\$}^{\user2{m}}} = - 0.13878 \times {10^{{ - 16}}} $$
$$ p6 = {{\$}_6} \circ {{\$}^{\user2{m}}} = 0.27756 \times {10^{{ - 16}}} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huang, Z., Li, Q., Ding, H. (2013). Special Configuration of Mechanisms. In: Theory of Parallel Mechanisms. Mechanisms and Machine Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4201-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4201-7_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4200-0

  • Online ISBN: 978-94-007-4201-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics