Skip to main content

Solar Energy

  • Chapter
  • First Online:
Resilient Energy Systems

Abstract

Designing a system for solar energy conversion into thermal energy or electricity is based on accurate assessment of the solar radiation in the given location and on the knowledge of solar radiation properties. The Sun is the closest star to the Earth, at the average distance of 1.5 × 1011m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stöcker H (1999) Toute la physique. Dunod, Paris,1180 p

    Google Scholar 

  2. Messenger R, Ventre J (2004) Photovoltaic systems engineering, 2nd edn. CRC Press LLC, Boca Raton, 455 p

    Google Scholar 

  3. http://en.wikipedia.org/wiki/Solar_radiation. Accessed 26 June 2005

  4. Duffie JA, Beckman WA (1991) Solar engineering of thermal processes, 2nd edn. Wiley Interscience, New York

    Google Scholar 

  5. Thekaekara MP (1974) Data on incident solar energy. Supplement to the Proceedings of the 20th annual meeting of the Institute for Environmental Science. Pages 21–49, Washington, D.C., April 30 1974

    Google Scholar 

  6. Iqbal M (1983) An introduction to solar radiation. Academic, Toronto

    Google Scholar 

  7. www.ipcc.ch/pub/reports.htm. Accessed 20 May 2005

  8. Experience, prospects and recommendations to overcome market barriers of parabolic trough collector power plant technology status. Report on solar trough power plants. Sponsored by the German Federal Minister for Education, Science, Research and Technology under Contract No. 0329660. ISBN 3-9804901-0-6. Copyright 1996. Pilkington Solar International GmbH

    Google Scholar 

  9. Bougard J (1995) Conversion d’energie. Machines solaires. Faculte Politechnique de Mons, AGADIR

    Google Scholar 

  10. Hinrichs RA, Kleinbach M (2002) Energy: its use and environment, 3rd edn. Thomson Learning, Brooks/Cole, 590 p

    Google Scholar 

  11. Boyle G (2004) Renewable energy: power for a sustainable future. Oxford University Press, Oxford, 452 p

    Google Scholar 

  12. Twejdell JU (1990) Renewable energy sources (Trans from English). Energoatomizdat, Moscow, 392 c

    Google Scholar 

  13. Dumitraşcu Gh, Macri V, Stadoleanu O (1998) Solar energy use. Timpul, Iaşi

    Google Scholar 

  14. Lorenzo E (2002) De Los Archivos Históricos De La Energía Solar. Las chimeneas solares: De una propuesta española en 1903 a la Central de Manzanares (pdf)

    Google Scholar 

  15. Günther H (1931) In hundert Jahren – Die künftige Energieversorgung der Welt. Kosmos, Gesellschaft der Naturfreunde, Franckh’sche Verlagshandlung, Stuttgart

    Google Scholar 

  16. Lucier RE (1978) Utilization of solar energy. Patent no. 1,023,564 CA. Int.Cl. F03G6/04; F03G6/00

    Google Scholar 

  17. Haaf W, Friedrich K, Mayr G, Schlaich J (1983) Solar chimneys. Part 1: principle and construction of the pilot plant in Manzanares. Int J Sol Energ 2(1):3–20

    Article  Google Scholar 

  18. Haaf W (1984) Solar chimneys. Part II: preliminary test results from the Manzanares pilot plant. Int J Sol Energ 2(2):141–161

    Article  Google Scholar 

  19. Schlaich J, Schiel W (2001) Solar chimneys. Encyclopedia of physical science and technology, 3rd edn. Academic, London. ISBN 0-12-227410-5

    Google Scholar 

  20. Schlaich J, Bergermann R, Schiel W, Weinrebe G. Design of commercial solar updraft tower systems. Utilization of solar induced convective flows for power generation. Schlaich Bergermann und Partner (sbp gmbh). Stutgart, Germany. http://www.1000friendsofflorida.org/solar/thesolarupdraft.pdf. Retrieved 23.03.2011

  21. Torre solar de 750 metros de altura en Ciudad Real (España). Green energy plan to use smaller solar tower, ABC, 2006-06-13

    Google Scholar 

  22. Schlaich J (1995) The solar chimney. Edition Axel Menges, Stuttgart

    Google Scholar 

  23. Schlaich J, Schiel W, Friedrich K, Schwarz G, Wehowsky P, Meinecke W, Kiera M (1990) Abschlußbericht Aufwindkraftwerk, Übertragbarkeit der Ergebnisse von Manzanares auf größere Anlagen. MFTFörderkennzeichen 0324249D, Stuttgart

    Google Scholar 

  24. Gannon AJ, Backström TW (2000) Solar chimney cycle analysis with system loss and solar collector. J Sol Energ Eng 122(3):133–137

    Article  Google Scholar 

  25. El-Haroun AA (2002) The effect of wind speed at the top of the tower on the performance and energy generated from thermosyphon solar turbine. Int J Sol Energ 22(1):9–18. doi:10.1080/0142591021000003336

    Article  Google Scholar 

  26. Weinrebe G (2000) Solar chimney simulation. In: Proceedings of the IEA SolarPACES task III simulation of solar thermal power systems workshop. Cologne, 28, 29 Sept 2000

    Google Scholar 

  27. Dos Santos Bernardes MA, Voß A, Weinrebe G (2003) Thermal and technical analyses of solar chimneys. Sol Energ 75:511–524

    Article  Google Scholar 

  28. Pretorius JP, Kröger DG (2006) Critical evaluation of solar chimney power plant performance. Sol Energ 80(5):535–544. doi:10.1016/j.solener, 2005.04.001 DOI:dx.doi.org

    Article  Google Scholar 

  29. Fickling D (2002) Real power from nothing but hot air. The Guardian, 19 Aug 2002

    Google Scholar 

  30. China invests in solar towers. Asia Times, 7 Oct 2004. Retrieved 9 July 2006

    Google Scholar 

  31. Padki MM, Sherif SA (1999) On a simple analytical model for solar chimneys. Int J Energ Res, 23, pp. 289–294

    Google Scholar 

  32. Schlaich J, Bergermann R, Schiel W, Weinrebe G (2005) Design of commercial solar updraft tower systems–utilization of solar induced convective flows for power generation (PDF). J Sol Energ Eng 127(1):117–124

    Article  Google Scholar 

  33. Bilgen E, Rheault J (2005) Solar chimney power plants for high latitudes. Sol Energ 79(5):449–458. doi:10.1016/j.solener, 2005.01.003 DOI:dx.doi.org

    Article  Google Scholar 

  34. Lucier R (1981) System for solar heat conversion into electrical energy. Brevet No. 4275309 US. F03D1/04

    Google Scholar 

  35. Dai YJ, Huang HB, Wang RZ (2003) Case study of solar chimney power plants in Northwestern regions of China. Renew Energ 28(8):1295–1304. doi:10.1016/S0960-1481(02)00227-6

    Article  Google Scholar 

  36. Onyangoa FN, Ochieng RM (2006) The potential of solar chimney for application in rural areas of developing countries. Fuel 85: Issues 17–18, 2561–2566. doi:10.1016/j.fuel.2006.04.029

    Article  Google Scholar 

  37. Monohans solar tower project heart of oil industry could become site of renewable energy project. Scan Syst 19 July 2003 http://www.democraticunderground.com/discuss/duboard.php?az=view_alladdress=115x21816

  38. Gidrometeoizdat L (1990) Research and applied handbook on climate in the USSR. Series 3: Multiannual data. Leningrad: Gidrometeoizdat. Part 1–6, Vyp. 11, MSSR

    Google Scholar 

  39. Executive summary: assessment of parabolic trough and power tower solar technology cost and performance forecasts. Sargent & Lundy LLC Consulting Group Chicago, Illinois NREL Technical Monitor: H. Price. Prepared under Subcontract No. LAA-2-32458-01

    Google Scholar 

  40. Solar energy systems. Status report on solar trough power plants, 1996

    Google Scholar 

  41. Stoddard L, Abiecunas J, O’Connell R (2005) Economic, energy, and environmental benefits of concentrating solar power in California. May 2005–April 2006. Black & Veatch Overland Park, Kansas NREL Technical Monitor: M. Mehos. Prepared under Subcontract No. AEK-5-55036-01

    Google Scholar 

  42. www.stirlingenergy.com

  43. Bougard J, Benallou A (1998) Le solaire thermique au service du developpment durable. Sous la direction scientifique de: IEPF, Quebec

    Google Scholar 

  44. Frank Shuman's Solar Arabian Dream. http://renewablebook.com/chapter-excerpts/350-2/. Accessed 17 Aug 2005

  45. Solar energy system design. www.powerfromthesun.net. Accessed 25 Mar 2012

  46. Ruprecht A et al (2003) Strömungstechnische Gestaltung eines Aufwindkraftwerks (Fluid dynamic design of a solar updraft power plant). In: Proceedings of the internationales symposium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen. Bauhaus–University Weimar, Weimar, 10–12 June 2003

    Google Scholar 

  47. Concentrating solar power: energy from mirrors. DOE/GO-102001-1147, FS 128, Mar 2001

    Google Scholar 

  48. Solar two central receiver. Consultant report. California Energy Commission, 1999

    Google Scholar 

  49. Bostan I, Dulgheru V, Dicusară I. Solar unit with Stirling motor. Patent No. 3348MD. BOPI no. 10/2007

    Google Scholar 

  50. Bostan I, Dulgheru V, Nicu T, Ciupercă R. External combustion Engine. Patent No. 2679 MD. BOPI no. 1/2005

    Google Scholar 

  51. http://www.enviromission.com.au/

  52. Russell O (1946) Light sensitive device. Patent No. 2,402,662 US

    Google Scholar 

  53. Dones R, Frischknect R (1998) Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains. Prog Photovolt Res Appl 6:117–125

    Article  Google Scholar 

  54. Alsema E (2000) Energy pay-back time and CO2 emissions of PV systems. Prog Photovolt Res Appl 8:17–25

    Article  Google Scholar 

  55. Systemes solaires. Le Journal des Énergies Renouvelabeles. Novembre–Decembre, No. 134, 1999; Mars–Avril, No. 136, 2000

    Google Scholar 

  56. Office for official publications of the European communities (1996) Photovoltaics in 2010. Vol. 1: current status and a strategy for European industrial and market development. Office for official publications of the European communities, Luxemburg

    Google Scholar 

  57. Rauschenbach HS (1980) The principles and technology of photovoltaic energy conversion. Litton Educational Publishing, New York

    Google Scholar 

  58. Markvart T (ed) (2000) Solar electricity, 2nd edn. UNESCO energy engineering series. John Wiley & Soons. Baffins Lane, Chichester, England, 280 p. ISBN 0-471-98853-7

    Google Scholar 

  59. Rauschenbach HS (1980) The principles and technology of photovoltaic energy conversion. Litton Educational Publishing, New York

    Google Scholar 

  60. Messenger R. Ventre J. (2004) Photovoltaic systems engineering. 2nd ed., CRC Pres LLC.

    Google Scholar 

  61. www.kyocerasolar.de/products. Accessed 11 Jan 2006

  62. Bostan I, Vişa I, Dulgheru V, Dicusară I. Self-orientation paraboloidal solar unit (variants). Patent no. 3975 MD. BI no 3/2010

    Google Scholar 

  63. Palz W, Zibetta H (1991) Energy payback time of photovoltaic modules. Int J Sol Energ 10(3–4):211–216

    Article  Google Scholar 

  64. Chancelier L, Laurent E (1996) L’électricité photovoltaïque. Collection “Le point sur”. Gret, Ministère de la Coopération, 255 p

    Google Scholar 

  65. Rodot M, Benallou A (1998) Guide de l’énergie solaire: Electricité solaire thermique au service du développement rural. RIES, 172 p

    Google Scholar 

  66. Perlin J (2007) Late 1950s – saved by the space race (HTML). SOLAR EVOLUTION – the history of solar energy. The Rahus Institute. Retrieved 25 Feb 2007

    Google Scholar 

  67. NASA JPL publication: basics of space flight, chapter 11. Typical onboard systems, electrical power supply and distribution subsystems. http://www2.jpl.nasa.gov/basics/bsf11-3.php (3 of 5) Accessed 25 Mar 2012

  68. Gaddy EM (1996) Cost performance of multi-junction, gallium arsenide, and silicon solar cells on spacecraft. Photovoltaic specialists conference. Conference record of the twenty fifth IEEE. Washington, DC, 13–17 May 1996, pp 293–296

    Google Scholar 

  69. Bostan I, Dulgheru V, Dicusară I. Patent no. 2965 MD. Self-orientation solar unit. B.I. no. 2/2006

    Google Scholar 

  70. Gidrometeoizdat L (1966) Handbook on climate in the USSR. Vyp. 11, MSSR. Solar radiation, radiation balance and solar shining

    Google Scholar 

  71. Von Backström TW (2003) Calculation of pressure and density in solar power plant chimneys. J Sol Energ Eng 125(1):127–129. doi:10.1115/1.1530198

    Article  Google Scholar 

  72. Systemes solaires. Le Journal des Énergies Renouvelabeles. Mai-Juin, no. 149, 2002

    Google Scholar 

  73. High performance photovoltaic project. Kickoff meeting. www.nrel.gov/docs/fy02osti/31284.pdf. NREL, 18 Oct. Identifying critical pathways

  74. Todos P, Sobor I, Ungureanu D, Chiciuc A, Pleşca M. Renewable energy: feasibility study. Ch.: Ministry of Ecology, Constructions and Territorial Development; UNDP Moldova, Chişinău, 2002, 158 p. ISBN 9975-9581-4-1

    Google Scholar 

  75. Sobor I, Kobîleaţchi N, Wahhab A (2001) Pump operating regime with electromagnetic vibrator with closed outled slide. In: International conference SIELMEN’01, vol III. Chişinău, 4–6 Oct 2001, pp 61–66. ISBN 9975-9638-8-9

    Google Scholar 

  76. Sobor I, Nucă I, Wahhab IA (2001) Mathematical model of the “Photovoltaic Generator–Inverter”. Electromagnetic pump. In: International conference SIELMEN’01, vol 1. Chişinău, 4–6 Oct 2001, pp 251–252. ISBN 9975-9638-6-2

    Google Scholar 

  77. Sobor I, Wahhab IA, Kobîleaţchi N (2001) Photovoltaic solar energy for small irrigation. In: Proceedings of the scientific conference “Efficiency increase of energy and water use in Moldovan agriculture”. Chişinău, 20–21 Sept 2001, pp 114–122. ISBN 9975-9645-4-0

    Google Scholar 

  78. Sobor I, Wahhab IA (2002) Pompes avec actionnement electromagnetique et niveau reduit de vibration. Buletinul Institutului Politehnic Iaşi, tomul XLVIII (LII), fasc. 5C, 2002. Electrotehnica, Energetica, Electronica, pp 85–92. ISNN 0258–9109

    Google Scholar 

  79. Sobor I, Kobîleaţki N, Gherţescu C, Wahhab IA (2003) Pumping photovoltaic system. International workshop “70th anniversary of the State Agrarian University of Moldova”. 7–8 Oct 2003, pp 152–155. ISBN 9975-9624-5-9

    Google Scholar 

  80. Sobor I, Gherţescu C (2003) Comparative analysis of drive characteristics and types of solar pumps. In: Proceedings of the 4th international conference on electromechanical and power systems, SIELMEN’03. Ch.: 26–27th Sept 2003, vol III, pp 193–196. ISBN 9975-9704-9-4

    Google Scholar 

  81. Sobor I, Kobîleaţkii N, Gherţescu C (2003) Simulation of dynamics and static regimes of solar pumps with electromagnetic vibrator. In: Proceedings of the 4th international conference on electromechanical and power systems, SIELMEN’03, vol I. Ch.: 26–27th Sept 2003, pp 43–46. ISBN 9975-9704-0-3

    Google Scholar 

  82. Sobor I, Kobîleaţkii N, Wahhab IA. Patent No.1907MD. Pump with vibrator, BOPI 04/2002

    Google Scholar 

  83. Sobor I, Kobileatkii N, Gherţescu C (2004) First photovoltaic system for small irrigation in the Republic of Moldova. Bull Polytech Inst Iaşi, vol L(LIV), Fasc. 5C. Electrotechnics, Energetics, Electronics, pp 1430–1435, Iaşi. ISNN 1223–8139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bostan, I., Gheorghe, A., Dulgheru, V., Sobor, I., Bostan, V., Sochirean, A. (2013). Solar Energy. In: Resilient Energy Systems. Topics in Safety, Risk, Reliability and Quality, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4189-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4189-8_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4188-1

  • Online ISBN: 978-94-007-4189-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics