Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 60))

Abstract

This chapter discusses the biochemical and functional links between classical cadherin adhesion systems and the cytoskeleton. Cadherins are best understood to cooperate with the actin cytoskeleton, but there is increasing evidence for the role of junctional microtubules in regulating cadherin biology. Cadherin adhesions and the junctional cytoskeleton are both highly dynamic systems that undergo continual assembly, turnover and remodeling, and yet maintain steady state structures necessary for intercellular adhesion. This requires the functional coordination of cadherins and cadherin-binding proteins, actin regulatory proteins, organizers of microtubule assembly and structure, and signaling pathways. These components act in concert to regulate junctional organization in response to extracellular forces and changing cellular contexts, which is essential for intercellular cohesion and tissue integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Takeichi M (2008) EPLIN mediates linkage of the cadherin-catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci U S A 105:13–19

    Article  PubMed  CAS  Google Scholar 

  • Achard V, Martiel J-L, Michelot A, Guerin C, Reymann A-C, Blanchoin L, Boujemaa-Paterski R (2010) A “Primer”-based mechanism underlies branched actin filament network formation and motility. Curr Biol 20:423–428

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A, Stehbens SJ, Yap AS (2009) Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions. Traffic 10:268–274

    Article  PubMed  CAS  Google Scholar 

  • Amann KJ, Pollard TD (2001) Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc Natl Acad Sci U S A 98:15009–15013

    Article  PubMed  CAS  Google Scholar 

  • Angres B, Barth A, Nelson WJ (1996) Mechanism for transition from initial to stable cell-cell adhesion: Kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J Cell Biol 134:549–557

    Article  PubMed  CAS  Google Scholar 

  • Ayalon O, Sabanai H, Lampugnani MG, Dejana E, Geiger B (1994) Spatial and temporal relationships between cadherins and PECAM-1 in cell-cell junctions of human endothelial-cells. J Cell Biol 126:247–258

    Article  PubMed  CAS  Google Scholar 

  • Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW, Liddington RC (2004). Structural basis for vinculin activation at sites of cell adhesion. Nature 430:583–586

    Article  PubMed  CAS  Google Scholar 

  • Baum B, Georgiou M (2011) Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 192:907–917

    Article  PubMed  CAS  Google Scholar 

  • Baum B, Perrimon N (2001) Spatial control of the actin cytoskeleton in Drosophila epithelial cells. Nat Cell Biol 3:883–890

    Article  PubMed  CAS  Google Scholar 

  • Bear JE (2008) Follow the monomer. Cell 133:765–767

    Article  PubMed  CAS  Google Scholar 

  • Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB (2002). Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109:509–521

    Article  PubMed  CAS  Google Scholar 

  • Bernadskaya YY, Patel FB, Hsu H-T, Soto MC (2011) Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins. Mol Biol Cell 22:2886–2899

    Article  PubMed  CAS  Google Scholar 

  • Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–671

    Article  PubMed  CAS  Google Scholar 

  • Bosse T, Ehinger J, Czuchra A, Benesch S, Steffen A, Wu X, Schloen K, Niemann HH, Scita G, Stradal TEB, Brakebusch C, Rottner K (2007) Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-met in distinct and common pathways. Mol Cell Biol 27:6615–6628

    Article  PubMed  CAS  Google Scholar 

  • Braga VMM, Yap AS (2005) The challenges of abundance: epithelial junctions and small GTPase signalling. Curr Opin Cell Biol 17:466–474

    Article  PubMed  CAS  Google Scholar 

  • Braga VMM, Machesky LM, Hall A, Hotchin NA (1997) The small GTPases rho and rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137:1421–1431.

    Article  PubMed  CAS  Google Scholar 

  • Bryant DM, Stow JL (2004) The ins and outs of E-cadherin trafficking. Trends Cell Biol 14:427–434

    Article  PubMed  CAS  Google Scholar 

  • Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251

    Article  PubMed  CAS  Google Scholar 

  • Carisey A, Ballestrem C (2011) Vinculin, an adapter protein in control of cell adhesion signalling. Eur J Cell Biol 90:157–163

    Article  PubMed  CAS  Google Scholar 

  • Carramusa L, Ballestrem C, Zilberman Y, Bershadsky AD (2007) Mammalian diaphanous-related formin Dia1 controls the organization of E-cadherin-mediated cell-cell junctions. J Cell Sci 120:3870–3882

    Article  PubMed  CAS  Google Scholar 

  • Cavey M, Rauzi M, Lenne PF, Lecuit T (2008) A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 453:751-U2

    Article  PubMed  CAS  Google Scholar 

  • Chausovsky A, Bershadsky AD, Borisy GG (2000) Cadherin-mediated regulation of microtubule dynamics. Nat Cell Biol 2:797–804

    Article  PubMed  CAS  Google Scholar 

  • Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11:62–74

    Article  PubMed  CAS  Google Scholar 

  • Chu YS, Thomas WA, Eder O, Pincet F, Perez E, Thiery JP, Dufour S (2004) Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J Cell Biol 167:1183–1194

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Raich W, Agbunag C, Leung B, Hardin J, Priess JR (1998) A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 141:297–308

    Article  PubMed  CAS  Google Scholar 

  • Dawes-Hoang RE, Parmar KM, Christiansen AE, Phelps CB, Brand AH, Wieschaus EF (2005) Folded gastrulation, cell shape change and the control of myosin localization. Dev 132:4165–4178

    Article  CAS  Google Scholar 

  • del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching Single Talin Rod Molecules Activates Vinculin Binding. Sci 323:638–641

    Article  CAS  Google Scholar 

  • den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS (2009) Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 20:3740–3750

    Article  CAS  Google Scholar 

  • Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn D, Pollard TD (1986) Elongation of actin-filaments is a diffusion-limited reaction at the barbed end and is accelerated by inert macromolecules. J Biol Chem 261:2754–2758

    Google Scholar 

  • El Sayegh TY, Arora PD, Laschinger CA, Laschinger CA, Lee W, Morrison C, Overall CM, Kapus A, McCulloch CAG (2004) Cortactin associates with N-cadherin adhesions and mediates intercellular adhesion strengthening in fibroblasts. J of Cell Sci 117:5117–5131

    Article  CAS  Google Scholar 

  • El Sayegh TY, Arora PD, Fan LZ, Laschinger CA, Greer PA, McCulloch CA, Kapus A (2005) Phosphorylation of N-cadherin-associated cortactin by Fer kinase regulates N-cadherin adhesion strength. Mol Biol Cell 16:5514–5527

    Article  PubMed  CAS  Google Scholar 

  • Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    Google Scholar 

  • Fernandez-Gonzalez R, Simoes SdM, Roeper J-C, Eaton S, Zallen JA (2009) Myosin II dynamics are regulated by tension in intercalating cells. Deval Cell 17:736–743

    Article  CAS  Google Scholar 

  • Gates J, Nowotarski SH, Yin H, Mahaffey JP, Bridges T, Herrera C, Homem CCF, Janody F, Montell DJ, Peifer M (2009) Enabled and capping protein play important roles in shaping cell behavior during Drosophila oogenesis. Deval Biol 333:90–107

    Article  CAS  Google Scholar 

  • Geisbrecht ER, Montell DJ (2002) Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 4:616–620

    PubMed  CAS  Google Scholar 

  • Georgiou M, Marinari E, Burden J, Baum B (2008) Cdc42, Par6, and aPKC Regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr Biol 18:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Gloushankova NA, Alieva NA, Krendel MF, Bonder EM, Feder HH, Vasiliev JM, Gelfand IM (1997) Cell-cell contact changes the dynamics of lamellar activity in nontransformed epitheliocytes but net in their ras-transformed descendants. Proc Natl Acad Sci U S A 94:879–883

    Article  PubMed  CAS  Google Scholar 

  • Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726

    Article  PubMed  CAS  Google Scholar 

  • Hansen SD, Mullins RD (2010) VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J Cell Biol 191:571–584

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Ishida H, Raziuddin R, Dorkhom S, Kamijo K, Miki T (2004) Novel kelch-like protein, KLEIP, is involved in actin assembly at cell-cell contact sites of Madin-Darby canine kidney cells. Mol Biol Cell 15:1172–1184

    Article  PubMed  CAS  Google Scholar 

  • Harris TJC, Peifer M (2005) The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J Cell Biol 170:813–823

    Article  PubMed  CAS  Google Scholar 

  • Harrison OJ, Jin XS, Hong SJ, Bahna F, Ahlsen G, Brasch J, Wu YH, Vendome J, Felsovalyi K, Hampton CM, Troyanovsky RB, Ben-Shau A, Frank J, Troyanovsky SM, Shapiro L, Honig B (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19:244–256

    Article  PubMed  CAS  Google Scholar 

  • Helwani FM, Kovacs EM, Paterson AD, Verma S, Ali RG, Fanning AS, Weed SA, Yap AS (2004) Cortactin is necessary for E-cadherin-mediated contact formation and actin reorganization. J Cell Biol 164:899–910

    Article  PubMed  CAS  Google Scholar 

  • Higgs HN, Pollard TD (1999) Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J Biol Chem 274:32531–32534

    Article  PubMed  CAS  Google Scholar 

  • Howes MT, Mayor S, Parton RG (2010) Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Curr Opin Cell Biol 22:519–527

    Article  PubMed  CAS  Google Scholar 

  • Insall RH, Machesky LM (2009) Actin dynamics at the leading edge: From simple machinery to complex networks. Dev Cell 17:310–322

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Werth DK, Richert ND, Pastan I (1983) Vinculin phosphorylation by the Src kinase—Interaction of vinculin with phospholipid-vesicles. J Biol Chem 258:4626–4631

    Google Scholar 

  • Ivanov AI, Hunt D, Utech M, Nusrat A, Parkos CA (2005) Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol Biol Cell 16:2636–2650

    Article  PubMed  CAS  Google Scholar 

  • Izumi G, Sakisaka T, Baba T, Tanaka S, Morimoto K, Takai Y (2004) Endocytosis of E-cadherin regulated by Rac and Cdc42 small G proteins through IQGAP1 and actin filaments. J Cell Biol 166:237–248

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M, Toret CP, Drubin DG. (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7:404–414

    Article  PubMed  CAS  Google Scholar 

  • Kametani Y, Takeichi M (2007) Basal-to-apical cadherin flow at cell junctions. Nat Cell Biol 9:92-U118

    Article  PubMed  CAS  Google Scholar 

  • Knudsen KA, Soler AP, Johnson KR, Wheelock MJ (1995) Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol 130:67–77

    Article  PubMed  CAS  Google Scholar 

  • Kobielak A, Pasolli HA, Fuchs E (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6:21-U2

    Article  PubMed  CAS  Google Scholar 

  • Kovacs EM, Ali RG, McCormack AJ, Yap AS (2002a) E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J Biol Chem 277:6708–6718

    Article  CAS  Google Scholar 

  • Kovacs EM, Goodwin M, Ali RG, Paterson AD, Yap AS (2002b) Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr Biol 12:379–382

    Article  CAS  Google Scholar 

  • Kovacs EM, Verma S, Ali RG, Ratheesh A, Hamilton NA, Akhmanova A, Yap AS (2011) N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway. Nat Cell Biol 13:934-U400

    Article  PubMed  CAS  Google Scholar 

  • Kovar DR (2006) Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 18:11–17

    Article  PubMed  CAS  Google Scholar 

  • Kovar DR, Pollard TD (2004) Progressing actin: sFormin as a processive elongation machine. Nat Cell Biol 6:1158–1159

    Article  PubMed  CAS  Google Scholar 

  • Kraemer A, Goodwin M, Verma S, Yap AS, Ali RG (2007) Rac is a dominant regulator of cadherin-directed actin assembly that is activated by adhesive ligation independently of Tiam1. Am J Physiol Cell Physiol 292:C1061-C1069

    Article  PubMed  CAS  Google Scholar 

  • Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB (2003) ENA/VASP proteins: Regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–564

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski AV, Maiden SL, Pokutta S, Choi H-J, Benjamin JM, Lynch AM, Nelson WJ, Weis WI, Hardin J (2010) In vitro and in vivo reconstitution of the cadherin-catenin-actin complex from Caenorhabditis elegans. Proc Natl Acad Sci U S A 107:14591–14596

    Article  PubMed  CAS  Google Scholar 

  • Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mege R-M (2010) Strength Dependence of Cadherin-Mediated Adhesions. Biophys J 98:534–542

    Article  PubMed  CAS  Google Scholar 

  • Lambert M, Choquet D, Mege RM (2002) Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton. J Cell Biol 157:469–479

    Article  PubMed  CAS  Google Scholar 

  • le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Leibfried A, Fricke R, Morgan M, Bogdan S, Bellaiche Y (2008) Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway. Curr Biol 18:1639–1648

    Article  PubMed  CAS  Google Scholar 

  • Li F, Higgs HN (2003) The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr Biol 13:1335–1340

    Article  PubMed  CAS  Google Scholar 

  • Ligon LA, Holzbaur ELF (2007) Microtubules tethered at epithelial cell junctions by dynein facilitate efficient junction assembly. Traffic 8:808–819

    Article  PubMed  CAS  Google Scholar 

  • Ligon LA, Karki S, Tokito M, Holzbaur ELF (2001) Dynein binds to beta-catenin and may tether microtubules at adherens junctions. Nat Cell Biol 3:913–917

    Article  PubMed  CAS  Google Scholar 

  • Liu ZJ, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107:9944–9949

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L, May RC, Hall ME, Pollard TD (1999) Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci U S A 96:3739–3744

    Article  PubMed  CAS  Google Scholar 

  • Maddugoda MP, Crampton MS, Shewan AM, Yap AS (2007) Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell-cell contacts in mammalian epithelial cells. J Cell Biol 178:529–540

    Article  PubMed  CAS  Google Scholar 

  • Mangold S, Wu SK, Norwood SJ, Collins BM, Hamilton NA, Thorn P, Yap AS (2011) Hepatocyte growth factor acutely perturbs actin filament anchorage at the epithelial zonula adherens. Curr Biol 21:503–507

    Article  PubMed  CAS  Google Scholar 

  • Martin AC, Kaschube M, Wieschaus EF (2009) Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495-U11

    Article  PubMed  CAS  Google Scholar 

  • Martin AC, Gelbart M, Fernandez-Gonzalez R, Kaschube M, Wieschaus EF (2010) Integration of contractile forces during tissue invagination. J Cell Biol 188:735–749

    Article  PubMed  CAS  Google Scholar 

  • Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci U S A 108:4708–4713

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki F, Mege RM, Jaffe SH, Friedlander DR, Gallin WJ, Goldberg JI, Cunningham BA, Edelman GM (1990) cDNAs of cell-adhesion molecules of different specificity induce changes in cell-shape and border formation in cultured S180 cells. J Cell Biol 110:1239–1252

    Article  PubMed  CAS  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    Article  PubMed  CAS  Google Scholar 

  • McGill MA, McKinley RFA, Harris TJC (2009) Independent cadherin-catenin and Bazooka clusters interact to assemble adherens junctions. J Cell Biol 185:787–796

    Article  PubMed  CAS  Google Scholar 

  • McLachlan RW, Yap AS (2011) Protein tyrosine phosphatase activity is necessary for E-Cadherin-activated src signaling. Cytoskeleton 68:32–43

    Article  PubMed  CAS  Google Scholar 

  • McLachlan RW, Kraemer A, Helwani FM, Kovacs EM, Yap AS (2007) E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell 18:3214–3223

    Article  PubMed  CAS  Google Scholar 

  • Mellor H (2010) The role of formins in filopodia formation. Biochim Biophys Acta Mol Cell Res 1803:191–200

    Article  CAS  Google Scholar 

  • Meng W, Mushika Y, Ichii T, Takeichi M (2008) Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135:948–959

    Article  PubMed  CAS  Google Scholar 

  • Michelot A, Drubin DG (2011) Building distinct actin filament networks review in a common cytoplasm. Curr Biol 21:R560-R569

    Article  PubMed  CAS  Google Scholar 

  • Miki H, Sasaki T, Takai Y, Takenawa T (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391:93–96

    Article  PubMed  CAS  Google Scholar 

  • Miyaguchi K (2000) Ultrastructure of the zonula adherens revealed by rapid-freeze deep-etching. J Struct Biol 132:169–178

    Article  PubMed  CAS  Google Scholar 

  • Miyake Y, Inoue N, Nishimura K, Kinoshita N, Hosoya H, Yonemura S (2006) Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp Cell Res 312:1637–1650

    Article  PubMed  CAS  Google Scholar 

  • Moore PB, Huxley HE, Derosier DJ (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol 50:279–295

    Google Scholar 

  • Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci U S A 95:6181–6186

    Article  PubMed  CAS  Google Scholar 

  • Nagafuchi A, Takeichi M (1988) Cell binding function of E-cadherin is regulated by the cytoplasmic domain. Embo J 7:3679–3684

    PubMed  CAS  Google Scholar 

  • Nagafuchi A, Takeichi M (1989) Transmembrane control of cadherin-mediated cell-adhesion—A 94 KDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul 1:37–44

    PubMed  CAS  Google Scholar 

  • Nagafuchi A, Ishihara S, Tsukita S (1994) The roles of catenins in the cadherin-mediated cell-adhesion—functional-analysis of E-cadherin-alpha catenin fusion molecules. J Cell Biol 127:235–245

    Article  PubMed  CAS  Google Scholar 

  • Nezami AG, Poy F, Eck MJ (2006) Structure of the autoinhibitory switch in formin mDia1. Struct 14:257–263

    Article  CAS  Google Scholar 

  • Niessen CM, Leckband D, Yap AS (2011) Tissue organization by Cadherin adhesion molecules: Dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91:691–731

    Article  PubMed  CAS  Google Scholar 

  • Noren NK, Niessen CM, Gumbiner BM, Burridge K (2001) Cadherin engagement regulates Rho family GTPases. J Biol Chem 276:33305–33308

    Article  PubMed  CAS  Google Scholar 

  • Ono S (2007) Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. In: Jeon KW (ed) International Review of Cytology—a Survey of Cell Biology, vol 258, pp 1–82

    Google Scholar 

  • Otani T, Ichii T, Aono S, Takeichi M (2006) Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells. J Cell Biol 175:135–146

    Article  PubMed  CAS  Google Scholar 

  • Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK (2005) Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433:488–494

    Article  PubMed  CAS  Google Scholar 

  • Ozawa M, Hoschutzky H, Herrenknecht K, Kemler R (1990) A possible new adhesive site in the cell-adhesion molecule uvomorulin. Mec Dev 33:49–56

    Article  CAS  Google Scholar 

  • Padrick SB, Rosen MK (2010) Physical mechanisms of signal integration by WASP family proteins. In: Kornberg RD (ed) Annual review of biochemistry, vol 79, pp 707–735

    Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Cuff LE, Lawton CD, DeMali KA (2010) Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. J Cell Sci 123:567–577

    Article  PubMed  CAS  Google Scholar 

  • Pokutta S, Weis WI (2002) The cytoplasmic face of cell contact sites. Curr Opin Struct Biol 12:255–262

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    Article  PubMed  CAS  Google Scholar 

  • Pollitt AY, Insall RH (2009) WASP and SCAR/WAVE proteins: The drivers of actin assembly. J Cell Sci 122:2575–2578

    Article  PubMed  CAS  Google Scholar 

  • Ren G, Crampton MS, Yap AS (2009a) Cortactin: Coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell Motil Cytoskeleton 66:865–873

    Article  CAS  Google Scholar 

  • Ren G, Helwani FM, Verma S, McLachlan RW, Weed SA, Yap AS (2009b) Cortactin is a functional target of E-cadherin-activated src family kinases in MCF7 epithelial monolayers. J Biol Chem 284:18913–18922

    Article  CAS  Google Scholar 

  • Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS (1995) Alpha(1)(E)-catenin is an actin-binding and actin-bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci U S A 92:8813–8817

    Article  PubMed  CAS  Google Scholar 

  • Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A (2005) Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435:513–518

    Article  PubMed  CAS  Google Scholar 

  • Rottner K, Haenisch J, Campellone KG (2010) WASH, WHAMM and JMY: Regulation of Arp2/3 complex and beyond. Trends Cell Biol 20:650–661

    Article  PubMed  CAS  Google Scholar 

  • Rouiller I, Xu XP, Amann KJ, Egile C, Nickell S, Nicastro D, Li R, Pollard TD, Volkmann N, Hanein D (2008) The structural basis of actin filament branching by the Arp2/3 complex. J Cell Biol 180:887–895

    Article  PubMed  CAS  Google Scholar 

  • Sahai E, Marshall CJ (2002) ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol 4:408–415

    Article  PubMed  CAS  Google Scholar 

  • Sawyer JK, Harris NJ, Slep KC, Gaul U, Peifer M (2009) The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J Cell Biol 186:57–73

    Article  PubMed  CAS  Google Scholar 

  • Sawyer JM, Harrell JR, Shemer G, Sullivan-Brown J, Roh-Johnson M, Goldstein B (2010) Apical constriction: A cell shape change that can drive morphogenesis. Dev Biology 341:5–19

    Article  CAS  Google Scholar 

  • Sawyer JK, Choi W, Jung K-C, He L, Harris NJ, Peifer M (2011) A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension. Mol Biol Cell 22:2491–2508

    Article  PubMed  CAS  Google Scholar 

  • Schroer TA (2001) Microtubules don and doff their caps: dynamic attachments at plus and minus ends. Curr Opin Cell Biol 13:92–96

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2:a005066

    Google Scholar 

  • Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20:551–556

    Article  PubMed  CAS  Google Scholar 

  • Scott JA, Shewan AM, den Elzen NR, Loureiro JJ, Gertler FB, Yap AS (2006) Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts. Mol Biol Cell 17:1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Shewan AM, Maddugoda M, Kraemer A, Stehbens SJ, Verma S, Kovacs EM, Yap AS (2005) Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol Biol Cell 16:4531–4542

    Article  PubMed  CAS  Google Scholar 

  • Small JV, Rottner K, Hahne P, Anderson KI (1999) Visualising the actin cytoskeleton. Microsc Res Tech 47:3–17

    Article  PubMed  CAS  Google Scholar 

  • Smutny M, Yap AS (2010) Neighborly relations: Cadherins and mechanotransduction. J Cell Biol 189:1075–1077

    Article  PubMed  CAS  Google Scholar 

  • Smutny M, Cox HL, Leerberg JM, Kovacs EM, Conti MA, Ferguson C, Hamilton NA, Parton RG, Adelstein RS, Yap AS (2010) Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 12:696–702

    Article  PubMed  CAS  Google Scholar 

  • Smutny M, Wu SK, Gomez GA, MangoldS, Yap AS, Hamilton NA (2011) Multicomponent analysis of junctional movements regulated by Myosin II isoforms at the epithelial zonula adherens. Plos One 6:e22458

    Google Scholar 

  • Stehbens SJ, Paterson AD, Crampton MS, Shewan AM, Ferguson C, Akhmanova A, Parton RG, Yap AS (2006) Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. J Cell Sci 119:1801–1811

    Article  PubMed  CAS  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421

    Article  PubMed  CAS  Google Scholar 

  • Taguchi K, Ishiuchi T, Takeichi M (2011) Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. J Cell Biol 194:643–656

    Article  PubMed  CAS  Google Scholar 

  • Tepass U, Hartenstein V (1994) The development of cellular junctions in the Drosophila embryo. Dev Biology 161:563–96

    Article  CAS  Google Scholar 

  • Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao GY, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    Article  PubMed  CAS  Google Scholar 

  • Urban E, Jacob S, Nemethova M, Resch GP, Small JV (2010) Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nat Cell Biol 12:533–542

    Article  PubMed  CAS  Google Scholar 

  • Uruno T, Liu JL, Zhang PJ, Fan YX, Egile C, Li P, Mueller SC, Zhan X (2001) Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 3:259–266

    Article  PubMed  CAS  Google Scholar 

  • Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Shewan AM, Scott JA, Helwani FM, den Elzen NR, Miki H, Takenawa T, Yap AS (2004) Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive contacts. J Biol Chem 279:34062–34070

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Manzanares M, Ma XF, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    Article  PubMed  CAS  Google Scholar 

  • Wallar BJ, Alberts AS (2003) The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol 13:435–446

    Article  PubMed  CAS  Google Scholar 

  • Watabe M, Nagafuchi A, Tsukita S, Takeichi M (1994) Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin catenin adhesion system in a dispersed carcinoma line. J Cell Biol 127:247–256

    Article  PubMed  CAS  Google Scholar 

  • Watabe-Uchida M, Uchida N, Imamura Y, Nagafuchi A, Fujimoto K, Uemura T, Vermeulen S, van Roy F, Adamson ED, Takeichi M (1998) Alpha-catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol 142:847–857

    Article  PubMed  CAS  Google Scholar 

  • Waterman-Storer CM, Salmon WC, Salmon ED (2000) Feedback interactions between cell-cell adherens junctions and cytoskeletal dynamics in Newt lung epithelial cells. Mol Biol Cell 11:2471–2483

    PubMed  CAS  Google Scholar 

  • Weaver AM, Karginov AV, Kinley AW, Weed SA, Li Y, Parsons JT, Cooper JA (2001) Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol 11:370–374

    Article  PubMed  CAS  Google Scholar 

  • Weaver AM, Heuser JE, Karginov AV, Lee WL, Parsons JT, Cooper JA (2002) Interaction of cortactin and N-WASp with Arp2/3 complex. Curr Biol 12:1270–1278

    Article  PubMed  CAS  Google Scholar 

  • Weber A, Pennise CR, Pring M (1994) Dnase-1 increases the rate-constant of depolymerization at the pointed (-) end of actin filament. Biochem 33:4780–4786

    Article  CAS  Google Scholar 

  • Weed SA, Du YR, Parsons JT (1998) Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J Cell SciSci 111:2433–2443

    CAS  Google Scholar 

  • Weis WI, Nelson WJ (2006) Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 281:35593–35597

    Article  PubMed  CAS  Google Scholar 

  • Weiss EE, Kroemker M, Rudiger AH, Jockusch BM, Rudiger M (1998) Vinculin is part of the cadherin-catenin junctional complex: Complex formation between alpha-catenin and vinculin. J Cell Biol 141:755–764

    Article  PubMed  CAS  Google Scholar 

  • Wildenberg GA, Dohn MR, Carnahan RH, Davis MA, Lobdell NA, Settleman J, Reynolds AB (2006) p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell 127:1027–1039

    Article  PubMed  CAS  Google Scholar 

  • Xu YW, Moseley JB, Sagot I, Poy F, Pellman D, Goode BL, Eck MJ (2004) Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell 116:711–723

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Nelson WJ (2007) Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J Cell Biol 178:517–527

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki D, Oikawa T, Takenawa T (2007) Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion. J Cell Sci 120:86–100

    Article  PubMed  CAS  Google Scholar 

  • Yap AS, Brieher WM, Pruschy M, Gumbiner BM (1997) Lateral clustering of the adhesive ectodomain: A fundamental determinant of cadherin function. Curr Biol 7:308–315

    Article  PubMed  CAS  Google Scholar 

  • Yap AS, Niessen CM, Gumbiner BM (1998) The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p129(ctn). J Cell Biol 141:779–789

    Article  PubMed  CAS  Google Scholar 

  • Yonemura S, Itoh M, Nagafuchi A, Tsukita S (1995) Cell-to-cell adherens junction formation and actin filament organization—similarities and differences between non-polarized fibroblasts and polarized epithelial-cells. J Cell Sci 108:127–142

    PubMed  CAS  Google Scholar 

  • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) Alpha-catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533-U35

    Article  PubMed  CAS  Google Scholar 

  • Ziegler WH, Liddington RC, Critchley DR (2006) The structure and regulation of vinculin. Trends Cell Biol 16:453–460

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Both authors were financially supported by the National Health and Medical Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpha S. Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Han, S., Yap, A. (2012). The Cytoskeleton and Classical Cadherin Adhesions. In: Harris, T. (eds) Adherens Junctions: from Molecular Mechanisms to Tissue Development and Disease. Subcellular Biochemistry, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4186-7_6

Download citation

Publish with us

Policies and ethics