Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 60))

Abstract

The specification, maintenance, division and differentiation of stem cells are integral to the development and homeostasis of many tissues. These stem cells often live in specialized anatomical areas, called niches. While niches can be complex, most involve cell-cell interactions that are mediated by adherens junctions. A diverse array of functions have been attributed to adherens junctions in stem cell biology. These include physical anchoring to the niche, control of proliferation and division orientation, regulation of signaling cascades and of differentiation. In this review, a number of model stem cell systems that highlight various functions of adherens junctions are discussed. In addition, a summary of the current understanding of adherens junction function in mammalian tissues and embryonic and induced pluripotent stem cells is provided. This analysis demonstrates that the roles of adherens junctions are surprisingly varied and integrated with both the anatomy and the physiology of the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ao A, Erickson RP (1992) Injection of Antisense RNA specific for E-cadherin demonstrates that E-cadherin facilitates compaction, the first differentiative step of the mammalian embryo. Antisense Res Dev 2:153–163

    PubMed  CAS  Google Scholar 

  • Assoian RK, Klein EA (2008) Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 18:347–352

    Article  PubMed  CAS  Google Scholar 

  • Barker N, van Es JH, Kuipers J, P. Kujala, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Batlle E, Henderson JT, Beghtel H, Van Den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111:251–263

    Article  PubMed  CAS  Google Scholar 

  • Bogard N, Lan L, Xu J, Cohen RS (2007) Rab11 maintains connections between germline stem cells and niche cells in the Drosophila ovary. Development 134:3413–3418

    Article  PubMed  CAS  Google Scholar 

  • Boyle M, Wong C, Rocha M, Jones DL (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1:470–478

    Article  PubMed  CAS  Google Scholar 

  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  PubMed  CAS  Google Scholar 

  • Chen HF, Chuang CY, Lee WC, Huang HP, Wu HC, Ho HN, Chen YJ, Kuo HC (2011a) Surface Marker epithelial cell adhesion molecule and E-cadherin facilitate the identification and selection of induced pluripotent stem cells. Stem Cell Rev 7:722–735

    Article  CAS  Google Scholar 

  • Chen, S, Wang S, Xie T (2011b) Restricting self-renewal signals within the stem cell niche: multiple levels of control. Curr Opin Genet Dev 6:684–689

    Article  Google Scholar 

  • Chen T, Yuan D, Wei B, Jiang J, Kang J, Ling K, Gu Y, Li J, Xiao L, Pei G (2010) E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells 28:1315–1325

    Article  PubMed  CAS  Google Scholar 

  • Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446:185–189

    Article  PubMed  CAS  Google Scholar 

  • Cohen DM, Chen CS (2008) Mechanical control of stem cell differentiation.StemBook

    Google Scholar 

  • den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS (2009) Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 20:3740–3750

    Article  Google Scholar 

  • Desclozeaux M, Venturato J, Wylie FG, Kay JG, Joseph SR, Le HT, Stow JL (2008) Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Physiol Cell Physiol 295:C545--C556

    Article  PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137:811–819

    Article  PubMed  CAS  Google Scholar 

  • Gambardella L, Barrandon Y (2003) The multifaceted adult epidermal stem cell. Curr Opin Cell Biol 15:771–777

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez S, Ibanez E, Santalo J (2011) Influence of e-cadherin-mediated cell adhesion on mouse embryonic stem cells derivation from isolated blastomeres. Stem Cell Rev 7:494–505

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Reyes A (2003) Stem cells, niches and cadherins: a view from drosophila. J Cell Sci 116:949–954

    Article  PubMed  CAS  Google Scholar 

  • Haque A, Hexig B, Meng Q, Hossain S, Nagaoka M, Akaike T (2011) The effect of recombinant E-cadherin substratum on the differentiation of endoderm-derived hepatocyte-like cells from embryonic stem cells. Biomaterials 32:2032–2042

    Article  PubMed  CAS  Google Scholar 

  • Holowacz T, Huelsken J, Dufort D, Van Der Kooy D (2011) Neural stem cells are increased after loss of beta-catenin, but neural progenitors undergo cell death. Eur J Neurosci 33:1366–1375

    Article  PubMed  Google Scholar 

  • Horie M, Ito A, Kiyohara T, Kawabe Y, Kamihira M (2010) E-cadherin gene-engineered feeder systems for supporting undifferentiated growth of mouse embryonic stem cells. J Biosci Bioeng 110:582–587

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Hembree M, Yin T, Nakamura Y, Gomei Y, Takubo K, Shiama H, Matsuoka S, Li L, Suda T (2010) Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6:194–198

    Article  PubMed  CAS  Google Scholar 

  • Hsu HJ, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance via the niche in drosophila. Proc Natl Acad Sci U S A 106:1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Hsu VW, Prekeris R (2010) Transport at the recycling endosome. Curr Opin Cell Biol 22:528–534

    Article  PubMed  CAS  Google Scholar 

  • Hyafil F, Morello D, Babinet C, Jacob F (1980) A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21:927–934

    Article  PubMed  CAS  Google Scholar 

  • Inaba M, Yuan H, Salzmann V, Fuller MT, Yamashita YM (2010) E-cadherin is required for centrosome and spindle orientation in drosophila male germline stem cells. PLoS One 5:e12473

    Google Scholar 

  • Jaks V, Kasper M, Toftgard R (2010) The hair follicle-a stem cell zoo. Exp Cell Res 316:1422–1428

    Article  PubMed  CAS  Google Scholar 

  • Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, Kuttler F, Malanchi I, Birchmeier W, Leutz A, Huelsken J, Held W (2008) Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111:142–149

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, Kirilly D, Weng C, Kawase E, Song X, Smith S, Schwartz J, Xie T (2008) Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the drosophila ovary. Cell Stem Cell 2:39–49

    Article  PubMed  CAS  Google Scholar 

  • Karpowicz P, Willaime-Morawek S, Balenci L, DeVeale B, Inoue T, Van Der Kooy D (2009) E-Cadherin regulates neural stem cell self-renewal. J Neurosci 29:3885–3896

    Article  PubMed  CAS  Google Scholar 

  • Katayama K, Melendez J, Baumann JM, Leslie JR, Chauhan BK, Nemkul N, Lang RA, Kuan CY, Zheng Y, Yoshida Y (2011) Loss of RhoA in neural progenitor cells causes the disruption of adherens junctions and hyperproliferation. Proc Natl Acad Sci U S A 108:7607–7612

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Potten CS (2011) The interfollicular epidermal stem cell saga: sensationalism versus reality check. Exp Dermatol 20:697–702

    Article  PubMed  Google Scholar 

  • Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V (2004) Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18:559–571

    Article  PubMed  CAS  Google Scholar 

  • Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F (2008) Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111:160–164

    Article  PubMed  CAS  Google Scholar 

  • Kuo CT, Mirzadeh Z, Soriano-Navarro M, Rasin M, Wang D, Shen J, Sestan N, Garcia-Verdugo J, Alvarez-Buylla A, Jan LY, Jan YN (2006) Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127:1253–1264

    Article  PubMed  CAS  Google Scholar 

  • Le Borgne R, Bellaiche Y, Schweisguth F (2002) Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr Biol 12:95–104

    Article  PubMed  Google Scholar 

  • le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115

    Article  PubMed  Google Scholar 

  • Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437:275–280

    Article  PubMed  CAS  Google Scholar 

  • Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  PubMed  CAS  Google Scholar 

  • Li P, Zon LI (2010) Resolving the controversy about N-cadherin and hematopoietic stem cells. Cell Stem Cell 6:199–202

    Article  PubMed  CAS  Google Scholar 

  • Li D, Zhou J, Wang L, Shin ME, Su P, Lei X, Kuang H, Guo W, Yang H, Cheng L, Tanaka TS, Leckband DE, Reynolds AB, Duan E, Wang F (2010a) Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol 191:631–644

    Article  CAS  Google Scholar 

  • Li L, Wang BH, Wang S, Moalim-Nour L, Mohib K, Lohnes D, Wang L (2010b) Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys J 98:2442–2451

    Article  CAS  Google Scholar 

  • Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010c) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107:9944–9949

    Article  CAS  Google Scholar 

  • Lock JG, Stow JL (2005) Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol Biol Cell 16:1744–1755

    Article  PubMed  CAS  Google Scholar 

  • Lyashenko N, Winter M, Migliorini D, Biechele T, Moon RT, Hartmann C (2011) Differential requirement for the dual functions of beta-catenin in embryonic stem cell self-renewal and germ layer formation. Nat Cell Biol 13:753–761

    Article  PubMed  CAS  Google Scholar 

  • Maeda K, Takemura M, Umemori M, Adachi-Yamada T (2008) E-cadherin prolongs the moment for interaction between intestinal stem cell and its progenitor cell to ensure notch signaling in adult drosophila midgut. Genes Cells 13:1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  • McLachlan RW, Yap AS (2007) Not so simple: the complexity of phosphotyrosine signaling at cadherin adhesive contacts. J Mol Med (Berl) 85:545–554

    Article  CAS  Google Scholar 

  • Michel M, Raabe I, Kupinski AP, Perez-Palencia R, Bokel C (2011) Local BMP receptor activation at adherens junctions in the drosophila germline stem cell niche. Nat Commun 2:415

    Article  PubMed  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278

    Article  PubMed  CAS  Google Scholar 

  • Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, Baffour-Awuah NY, Ambruzs DM, Fogli LK, Algra S, Breault DT (2011) Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci U S A 108:179–184

    Article  PubMed  CAS  Google Scholar 

  • Moore RN, Cherry JF, Mathur V, Cohen R, Grumet M, Moghe PV (2011) E-Cadherin-expressing feeder cells promote neural lineage restriction of human embryonic stem cells. Stem Cells Dev 21:30-41

    Article  PubMed  Google Scholar 

  • Nagaoka M, Koshimizu U, Yuasa S, Hattori F, Chen H, Tanaka T, Okabe M, Fukuda K, Akaike T (2006) E-cadherin-coated plates maintain pluripotent ES cells without colony formation. PLoS One 1:e15

    Google Scholar 

  • Nagaoka M, Si-Tayeb K, Akaike T, Duncan SA (2010) Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev Biol 10:60

    Article  PubMed  Google Scholar 

  • Najm FJ, Chenoweth JG, Anderson PD, Nadeau JH, Redline RW, McKay RD, Tesar PJ (2011) Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8:318–325

    Article  PubMed  CAS  Google Scholar 

  • Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A, ten Berge D, Kalani Y (2008) Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol 73:59–66

    Article  PubMed  CAS  Google Scholar 

  • Ohlstein B, Kai T, Decotto E, Spradling A (2004) The stem cell niche: theme and variations. Curr Opin Cell Biol 16:693–699

    Article  PubMed  CAS  Google Scholar 

  • Ohlstein B, Spradling A (2006) The adult drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474

    Article  PubMed  CAS  Google Scholar 

  • Ohlstein B, Spradling A (2007) Multipotent drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315:988–992

    Article  PubMed  CAS  Google Scholar 

  • Paez-Gonzalez P, Abdi K, Luciano D, Liu Y, Soriano-Navarro M, Rawlins E, Bennett V, Garcia-Verdugo JM, Kuo CT (2011) Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71:61–75

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Chen S, Weng C, Call G, Zhu D, Tang H, Zhang N, Xie T (2007) Stem cell aging is controlled both intrinsically and extrinsically in the drosophila ovary. Cell Stem Cell 1:458–469

    Article  PubMed  CAS  Google Scholar 

  • Perez-Moreno M, Davis MA, Wong E, Pasolli HA, Reynolds AB, Fuchs E (2006) p120-catenin mediates inflammatory responses in the skin. Cell 124:631–644

    Article  PubMed  CAS  Google Scholar 

  • Perez-Moreno M, Song W, Pasolli HA, Williams SE, Fuchs E (2008) Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer. Proc Natl Acad Sci U S A 105:15399–15404

    Article  PubMed  CAS  Google Scholar 

  • Rasin MR, Gazula VR, Breunig JJ, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, Sestan N (2007) Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 10:819–827

    Article  PubMed  CAS  Google Scholar 

  • Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D (2011) E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 12:720–726

    Article  PubMed  CAS  Google Scholar 

  • Riethmacher D, Brinkmann V, Birchmeier C (1995) A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci U S A 92:855–859

    Article  PubMed  CAS  Google Scholar 

  • Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40:915–920

    Article  PubMed  CAS  Google Scholar 

  • Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD (2011) Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144:782–795

    Article  PubMed  CAS  Google Scholar 

  • Schneider MR, Dahlhoff M, Horst D, Hirschi B, Trulzsch K, Muller-Hocker J, Vogelmann R, Allgauer M, Gerhard M, Steininger S, Wolf E, Kolligs FT (2011) A key role for E-cadherin in intestinal homeostasis and paneth cell maturation. PLoS One 5:e14325

    Google Scholar 

  • Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD, Lantz DM, Seykora JT, Vasioukhin V (2011) alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4:ra33

    Google Scholar 

  • Singbrant S, Askmyr M, Purton LE, Walkley CR (2011) Defining the hematopoietic stem cell niche: the chicken and the egg conundrum. J Cell Biochem 112:1486–1490

    Article  PubMed  CAS  Google Scholar 

  • Snippert HJ, Van Der Flier LG, Sato T, van Es JH, Van Den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144

    Article  PubMed  CAS  Google Scholar 

  • Solanas G, Cortina C, Sevillano M, Batlle E (2011) Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat Cell Biol 13:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Soncin F, Mohamet L, Eckardt D, Ritson S, Eastham AM, Bobola N, Russell A, Davies S, Kemler R, Merry CL, Ward CM (2009) Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal. Stem Cells 27:2069–2080

    Article  PubMed  CAS  Google Scholar 

  • Soncin F, Mohamet L, Ritson S, Hawkins K, Bobola N, Zeef L, Merry CL, Ward CM (2011) E-cadherin acts as a regulator of transcripts associated with a wide range of cellular processes in mouse embryonic stem cells. PLoS One 6:e21463

    Google Scholar 

  • Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the drosophila ovary. Proc Natl Acad Sci U S A 99:14813–14818

    Article  PubMed  CAS  Google Scholar 

  • Song X, Zhu CH, Doan C, Xie T (2002) Germline stem cells anchored by adherens junctions in the drosophila ovary niches. Science 296:1855–1857

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  PubMed  CAS  Google Scholar 

  • Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, de Sauvage FJ (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478:255–259

    Article  PubMed  CAS  Google Scholar 

  • Tinkle CL, Lechler T, Pasolli HA, Fuchs E (2004) Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc Natl Acad Sci U S A 101:552–557

    Article  PubMed  CAS  Google Scholar 

  • Tinkle CL, Pasolli HA, Stokes N, Fuchs E (2008) New insights into cadherin function in epidermal sheet formation and maintenance of tissue integrity. Proc Natl Acad Sci U S A 105:15405–15410

    Article  PubMed  CAS  Google Scholar 

  • Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D, Fromm M, Kemler R, Krieg T, Niessen CM (2005) E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 24:1146–1156

    Article  PubMed  CAS  Google Scholar 

  • Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E (2001) Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 104:605–617

    Article  PubMed  CAS  Google Scholar 

  • Vestweber D, Ocklind C, Gossler A, Odin P, Obrink B, Kemler R (1985) Comparison of two cell-adhesion molecules, uvomorulin and cell-CAM 105. Exp Cell Res 157:451–461

    Article  PubMed  CAS  Google Scholar 

  • Voog J, D’Alterio C, Jones DL (2008) Multipotent somatic stem cells contribute to the stem cell niche in the drosophila testis. Nature 454:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Wallenfang MR, Nayak R, DiNardo S (2006) Dynamics of the male germline stem cell population during aging of drosophila melanogaster. Aging Cell 5:297–304

    Article  PubMed  CAS  Google Scholar 

  • Watt FM, Collins CA (2008) Role of beta-catenin in epidermal stem cell expansion, lineage selection, and cancer. Cold Spring Harb Symp Quant Biol 73:503–512

    Article  PubMed  CAS  Google Scholar 

  • Wray J, Kalkan T, Gomez-Lopez S, Eckardt D, Cook A, Kemler R, Smith A (2011) Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13:838–845

    Article  PubMed  CAS  Google Scholar 

  • Xi R (2009) Anchoring stem cells in the niche by cell adhesion molecules. Cell Adh Migr 3:396–401

    Article  PubMed  Google Scholar 

  • Yagita Y, Sakurai T, Tanaka H, Kitagawa K, Colman DR, Shan W (2009) N-cadherin mediates interaction between precursor cells in the subventricular zone and regulates further differentiation. J Neurosci Res 87:3331–3342

    Article  PubMed  CAS  Google Scholar 

  • Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550

    Article  PubMed  CAS  Google Scholar 

  • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542

    Article  PubMed  CAS  Google Scholar 

  • Young P, Boussadia O, Halfter H, Grose R, Berger P, Leone DP, Robenek H, Charnay P, Kemler R, Suter U (2003) E-cadherin controls adherens junctions in the epidermis and the renewal of hair follicles. EMBO J 22:5723–5733

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work on cell adhesion and cytoskeleton organization is supported by a grant to TL from NIH/NIAMS (R01AR055926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Lechler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lechler, T. (2012). Adherens Junctions and Stem Cells. In: Harris, T. (eds) Adherens Junctions: from Molecular Mechanisms to Tissue Development and Disease. Subcellular Biochemistry, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4186-7_15

Download citation

Publish with us

Policies and ethics