Skip to main content

Leaf Analysis in Citrus: Developments in Analytical Techniques

  • Chapter
  • First Online:
Advances in Citrus Nutrition

Abstract

The complexity and sophistication of instruments for plant tissue analysis continues to advance, both in research laboratory grade instruments as well as for field use. These advances are seen in direct measurement of nutrients and trace elements, as well as indirect measurement, especially as statistical approaches improve through modeling of relationships between direct and indirect methods. This chapter has given an overview of recent advances, often using review articles followed by selected applications to citrus leaf analysis, but also offering other venues for using these analytical tools to aid both research and precision citrus management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott JA (1999) Quality measurement of fruits and vegetables. Postharvest Biol Technol 15:207–225

    Article  Google Scholar 

  • Abu-Samra A, Morris JS, Koirtyohann SR (1975) Wet ashing of some biological samples in a microwave oven. Anal Chem 47:1475–1477

    Article  PubMed  CAS  Google Scholar 

  • Alva AK, Tucker DPH (1997) Surface decontamination of citrus leaves for macro and micro nutrient analysis. Proc Fla State Hortic Soc 110:86–88

    Google Scholar 

  • Alva AK, Paramasivam S, Obreza TA et al (2006) Nitrogen best management practice for citrus trees I. Fruit yield, quality, and leaf nutritional status. Sci Hortic 107:233–244

    Article  CAS  Google Scholar 

  • Becker JS (2008) Trace, ultratrace and surface analysis. In: Becker JS (ed) Inorganic mass spectrometry: principles and applications. Willey, Chichester

    Chapter  Google Scholar 

  • Blasco J, Aleixos N, Gomez J et al (2007) Citrus sorting by identification of the most common defects using multispectral computer vision. J Food Eng 83:384–393

    Article  Google Scholar 

  • Boaretto RM, Quaggio JA, Filho FDAAM et al (2008) Absorption and mobility of boron in young citrus plants. Commun Soil Sci Plant Anal 39(17–18):2501–2514

    Article  CAS  Google Scholar 

  • Boaretto RM, Quaggio JA, Mattos D Jr et al (2011) Boron uptake and distribution in field grown citrus trees. J Plant Nutr 34(6):839–849

    Article  CAS  Google Scholar 

  • Bradford T, Cook MN (1997) Inductively coupled plasma (ICP). http://www.cee.vt.edu/ewr/environmental/teach/smprimer/icp/icp.html. Consulted 20 Dec 2011

  • Campbell CR, Plank CO (1998) Preparation of plant tissue for laboratory analysis. In: Kalra YP (ed) Handbook of reference methods for plant analysis. CRC Press, Boca Raton, pp 37–50

    Google Scholar 

  • Carrasco E, Bautista JAG, Mateo JVG (2007) Automated sequential monitoring of ammonium, phosphate, and nitrite in wastewater by multi-commutated peristaltic and solenoid pumped flow system – a comparative study. Chem Anal 52:757–770

    CAS  Google Scholar 

  • Ceballos H, Sanchez T, Chavez AL et al (2006) Variation in crude protein content in cassava (Manihot esculenta Crantz) roots. J Food Compos Anal 19:589–593

    Article  CAS  Google Scholar 

  • Embleton TW, Jones WW, Labanouskas CK et al (1973) Leaf analysis as a diagnostic tool and guide to fertilization. In: Reuther W (ed) The citrus industry, vol 3. University of California, Division of Agricultural Sciences, Berkeley, pp 183–210

    Google Scholar 

  • Esslemont G, Maher W, Ford P et al (2000) The determination of phosphorus and other elements in plant leaves by ICP–MS after low-volume microwave digestion with nitric acid. Atomic Spectrosc 21:42–46

    CAS  Google Scholar 

  • Evans EH, Day JA, Price WJ et al (2003) Atomic spectrometry update: advances in atomic emission, absorption and fluorescence spectrometry, and related techniques. J Atomic Spectrom A8:808–833

    Article  Google Scholar 

  • Fletcher RS, Escobar DE, Skaria M (2004) Evaluating airborne normalized difference vegetation index imagery for citrus orchard surveys. HortTechnol 14(1):91–94

    Google Scholar 

  • Foley WJ, McIlwee A, Lawler I et al (1998) Ecological applications of near infrared reflectance spectroscopy – a tool for rapid, cost–effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia 116:293–305

    Article  Google Scholar 

  • Futch SH, Gallaher RN (1996) A comparison of citrus leaf wash methods for removal of zinc nutritional sprays. Proc Fla State Hortic Soc 109:43–46

    Google Scholar 

  • García-Alonso JI, Camblor MG, Bayón MM et al (1997) Different quantification approaches for the analysis of biological and environmental samples using inductively coupled plasma mass spectrometry. J Mass Spectrom 32:556–564

    Article  PubMed  Google Scholar 

  • Gardner WS, Malczyk JM (1983) Discrete injection segmented flow analysis of nutrients in small-volume water samples. Anal Chem 55:1645–1647

    Article  CAS  Google Scholar 

  • Gomez M, Junior DS, Nunes LC et al (2011) Evaluation of grinding methods for pellets preparation aiming at the analysis of plant materials by laser induced breakdown spectrometry. Talanta 85:1744–1750

    Article  Google Scholar 

  • Gregori IE, Quiroz W, Pinochet H et al (2005) Simultaneous speciation analysis of Sb(III), Sb(V) and (CH3)3SbCl2 by high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry detection (HPLC-HG-AFS): application to antimony speciation in sea water. J Chromatogr A 1091:94–101

    Article  PubMed  Google Scholar 

  • Handson PD, Shelley BC (1993) A review of plant analysis in Australia. Aust J Exp Agric 33:1029–1038

    Article  CAS  Google Scholar 

  • Husted S, Persson DP, Laursen KH et al (2011) Review: the role of atomic spectrometry in plant science. J Anal Atomic Spectrom 26:52–79

    Article  CAS  Google Scholar 

  • Berghof Products and Instruments GmbH (2011) Germany. http://www.berghof.com/multimedia /Downloads/BPI/Dokumente/Oeffentlicher_Bereich/Laborgeraete/Theorie/MW_Theorie_Probenvorbereitung_PT_en.pdf. Available on: 20 Dec 2011

    Google Scholar 

  • Kalra YP, Maynard DG (1998) Microwave digestion of plant tissue in an open vessel. In: Kalra YP (ed) Handbook of reference methods for plant analysis. CRC Press, Boca Raton, pp 63–68

    Google Scholar 

  • Kraska JE, Breitenbeck GA (2010) Simple, robust method for quantifying silicon in plant tissue. Commun Soil Sci Plant Anal 41(17):2075–2085

    Article  CAS  Google Scholar 

  • Laursen KH, Hansen TH, Persson DP et al (2009) Recent developments in plant tissue analysis. In: Proceedings of the international plant nutrition colloquium XVI. University of California, Davis

    Google Scholar 

  • Manivannan S, Chadha KL (2011) Standardization of time of sampling for leaf nutrient diagnosis on Kinnow Mandarin in northwest India. J Plant Nutr 34:1820–1827

    Article  CAS  Google Scholar 

  • Mann KK, Schumann AW, Obreza TA (2011) Delineating productivity zones in a citrus grove using citrus production, tree growth and temporally stable soil data. Precis Agric 12:457–472

    Article  Google Scholar 

  • Menesatti P, Antonucci F, Pallottino F et al (2010) Estimation of plant nutritional status by vis-NIR spectrophotometric analysis on orange leaves. Biosyst Eng 105:454

    Article  Google Scholar 

  • Miller RO (1998a) High-temperature oxidation: dry ashing. In: Kalra YP (ed) Handbook of reference methods for plant analysis. CRC Press, Boca Raton, pp 53–56

    Google Scholar 

  • Miller RO (1998b) Microwave digestion of plant tissue in a closed vessel. In: Kalra YP (ed) Handbook of reference methods for plant analysis. CRC Press, Boca Raton, pp 69–74

    Google Scholar 

  • Min M, Lee WS, Burks TE et al (2008) Design of a hyperspectral nitrogen sensing system for citrus. Comput Electron Agric 63:215–226

    Article  Google Scholar 

  • Nadkarni RA (1984) Applications of microwave oven dissolution in analysis. Anal Chem 56:2233–2237

    Article  CAS  Google Scholar 

  • Nash MJ, Maskall JE, Hill S (2002) Methodologies for determination of antimony in terrestrial environmental samples. J Environ Monit 2:97

    Article  Google Scholar 

  • Ohta T, Ito M, Kotani T et al (2009) Emission enhancement of laser-induced breakdown spectroscopy by localized surface plasmon resonance for analyzing plant nutrients. Appl Spectrosc 63(5):555–558

    Article  PubMed  CAS  Google Scholar 

  • Ontermaa E, Haines J, Reinholde V (1996) User perspective on laboratory analysis and its reliability. Proc Fla State Hortic Soc 109:81–85

    Google Scholar 

  • Patton CJ, Fisher AE, Campbell WH et al (2002) Corn leaf nitrate reductase – a nontoxic alternative to cadmium for photometric nitrate determinations in water samples by air- segmented continuous-flow analysis. Environ Sci Technol 36:729–735

    Article  PubMed  CAS  Google Scholar 

  • Potin-Gautier MF, Pannier W, Quiroz H et al (2005) Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry. Anal Chim Acta 553:214–222

    Article  CAS  Google Scholar 

  • Rea AW, Keeler GI (1998) Microwave digestion and analysis of foliage for total mercury by cold vapor atomic fluorescence spectroscopy. Biogeochemistry 40:115–123

    Article  CAS  Google Scholar 

  • Růžička J, Hansen EH (1980) Flow injection analysis: Principles, applications and trends. Anal Chim Acta 114:19–44

    Article  CAS  Google Scholar 

  • Sah RN, Miller RO (1992) Spontaneous reaction for acid dissolution of biological tissues in closed vessels. Anal Chem 64(2):230–232

    Article  PubMed  CAS  Google Scholar 

  • Smith PF (1966) Leaf analysis of citrus. In: Childers NF (ed) Nutrition of fruit crops. Horticultural Publications, Rutgers State University, New Brunswick, pp 208–228

    Google Scholar 

  • Soon YK, Kalra YP (1994) A comparison of plant tissue digestion methods for nitrogen and phosphorus analyses. Can J Soil Sci 75:243–246

    Google Scholar 

  • Taylor HE (2001) Inductively coupled plasma-mass spectrometry: practices and techniques. Academic Press, Boulder

    Google Scholar 

  • White RT Jr, Douthit GE (1985) Use of microwave oven and nitric acid-hydrogen peroxide digestion to prepare botanical materials for elemental analysis by inductively coupled argon plasma emission spectroscopy. J Assoc Off Anal Chem 68:766–769

    CAS  Google Scholar 

  • Zude M, Pflanz M, Kaprielian C et al (2008) NIRS as a tool for precision horticulture in the citrus industry. Biosyst Eng 99:455–459

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to S.S. Shukla and S. Barkataky for their assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Hanlon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hanlon, E.A., Morgan, K.T., Obreza, T.A., Mylavarapu, R. (2012). Leaf Analysis in Citrus: Developments in Analytical Techniques. In: Srivastava, A. (eds) Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_6

Download citation

Publish with us

Policies and ethics