Skip to main content

Phytophenolic Nutrients in Citrus: Biochemical and Molecular Evidence

  • Chapter
  • First Online:
Book cover Advances in Citrus Nutrition

Abstract

Natural products as disease remedies have a history of near 5,000 years (India, China and Greece), and even today, in this advanced technological age, a revival of interest is being witnessed in the use of natural or plant-based therapeutic agents for the treatment of several pathological conditions. Citrus fruits have been utilised as a traditional medicine in India, China, Korea and Japan, and many studies have highlighted the various biological properties of their phytophenolics which are suggested to be responsible for the prevention of degene­rative diseases such as diabetes and cancer. With the background of comprehensive studies conducted on Mauritian citrus fruits, this chapter reviews some of the literature data on the phytophenolic contents, vitamin C composition and antioxidant functions of citrus extracts and emphasises on their potential applications in nutrition management programmes for diabetes and cancer chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albach RF, Redman GH (1969) Composition and inheritance of flavanones in citrus fruit. Phytochemistry 8:127–143

    Article  CAS  Google Scholar 

  • Anis M, Aminuddin M (1981) Flavonoid patterns of leaves of some citrus species and their hybrids. Plant Biochem J 8(1):56–60

    CAS  Google Scholar 

  • Aruoma OI (1993) Use of DNA damage as a measure of pro-oxidant actions of antioxidant food additives and nutritive components. In: Halliwel B, Arouma OL (eds) DNA and free radicals. London, Eliis Horwood, pp 315–317

    Article  PubMed  CAS  Google Scholar 

  • Aruoma OI (1994) Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol 32:671–683

    Article  PubMed  CAS  Google Scholar 

  • Aruoma OI (2003) Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat Res 523–524:9–20

    PubMed  Google Scholar 

  • Aruoma OI, Bahorun T, Clement Y et al (2005) Inflammation, cellular and redox signalling mechanisms in cancer and degenerative diseases. Mutat Res 579:1–5

    Article  PubMed  CAS  Google Scholar 

  • Beisiegel U, Weber W, Havinga JR et al (1988) Apolipoprotein E-binding proteins isolated from dog and human liver. Arteriosclerosis 8:288–297

    Article  PubMed  CAS  Google Scholar 

  • Benavente-Garcia O, Castillo J, Marin FR et al (1997) Use and properties of citrus flavonoids. J Agric Food Chem 45:4506–4515

    Article  Google Scholar 

  • Benherlal PS, Arumughan C (2008) Studies on modulation of DNA integrity in Fenton’s system by phytochemicals. Mutat Res 648:1–8

    Article  PubMed  CAS  Google Scholar 

  • Berhow M, Tisserat B, Kanes K et al (1998) Survey of phenolic compounds produced in citrus. Technical Bulletin No 1856. United States Department of Agriculture, Agricultural Research Service, Washington, DC. http://www.ars.usda.gov/IS/np/phenolics.htm

  • Bisht K, Wagner KH, Bulmer AC (2008) Curcumin, resveratrol and flavanoids as anti-inflammatory, cyto-and DNA protective dietary compounds. Toxicology 278:88–100

    Article  Google Scholar 

  • Bourdon E, Loreau N, Blache D (1999) Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J 13:233–244

    PubMed  CAS  Google Scholar 

  • Bracke ME, Vyncke B, Opdenakker JM et al (1991) Effect of catechins and citrus flavonoids on invasion in vitro. Clin Exp Metastasis 9:13–25

    Article  PubMed  CAS  Google Scholar 

  • Cadet J, Berger M, Douki T et al (1997) Oxidative damage to DNA: formation, measurement and biological significance. Rev Physiol Biochem Pharmacol 131:1–87

    PubMed  CAS  Google Scholar 

  • Cano A, Medina A, Bermejo A (2008) Bioactive compounds in different citrus varieties, discrimination among cultivars. J Food Compos Anal 21:377–381

    Article  CAS  Google Scholar 

  • Castillo J, Benavente-Garcia O, Delrio JA (1992) Naringin and neohesperidin levels during development of leaves, flower, buds and fruits of Citrus aurantium. Plant Physiol 99:67–73

    Article  PubMed  CAS  Google Scholar 

  • Central Statistics Office (CSO) (2008) Digest of agricultural statistics. CSO, Port Louis. http://statsmauritius.gov.mu

  • Chen C, Kong ANT (2005) Dietary cancer-chemopreventive compounds: from signalling and gene expression to pharmacological effects. Trends Pharmacol Sci 26:318–326

    Article  PubMed  Google Scholar 

  • Chidambara Murthy KN, Kim J et al (2011) Differential inhibition of human colon cancer cells by structurally similar flavonoids of citrus. Food Chem. doi:10.1016/j.foodchem.2011.10.014

  • Critchfield JW, Welsh CJ, Phang JM et al (1994) Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells: activation of P-glycoprotein as a putative mechanism. Biochem Pharmacol 48:1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Davignon J (2005) Apolipoprotein E and atherosclerosis: beyond lipid effect. Arterioscler Thromb Vasc Biol 25:267–269

    Article  PubMed  CAS  Google Scholar 

  • De Flora S, Ferguson LR (2005) Overview of mechanisms of cancer chemo preventive agents. Mutat Res 591:8–15

    Article  PubMed  Google Scholar 

  • De Flora S, Ramel C (1988) Mechanisms of inhibitors of mutagenesis and carcinogenesis: classification and overview. Mutat Res 202:285–306

    Article  PubMed  Google Scholar 

  • Eberhardt MV, Kobira Keck AS, Juvik JA et al (2005) Correlation analyses of phytochemical composition, chemical, and cellular measures of antioxidant activity of broccoli (Brassica oleracea L. Var. italica). J Agric Food Chem 53:7421–7431

    Article  PubMed  CAS  Google Scholar 

  • Ekambaram G, Rajendran P, Magesh V et al (2008) Naringenin reduces tumor size and weight lost in N-methyl-N′-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Nutr Res 28:106–112

    Article  PubMed  CAS  Google Scholar 

  • Fattouch S, Caboni P, Coroneo V et al (2007) Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem 55:963–969

    Article  PubMed  CAS  Google Scholar 

  • Faure P, Troncy L, Lecomte M et al (2005) Albumin antioxidant capacity is modified by methylglyoxal. Diabetes Metab 31:169–177

    Article  PubMed  CAS  Google Scholar 

  • Girard-Lalancette K, Pichette A, Legault J (2009) Sensitive cell-based assay using DCFH oxidation for the determination of pro- and antioxidant properties of compounds and mixtures: analysis of fruit and vegetable juices. Food Chem 115:720–726

    Article  CAS  Google Scholar 

  • Gorinstein S, Martin-Belloso O, Park YS et al (2001) Comparison of some biochemical characteristics of different citrus fruits. Food Chem 74:309–315

    Article  CAS  Google Scholar 

  • Gorinstein S, Cvikrova M, Machackova I et al (2004) Characterization of antioxidant compounds in Jaffa sweeties and white grapefruits. Food Chem 84:503–510

    Article  CAS  Google Scholar 

  • Guo H, Ling W, Wang Q et al (2008) Cyanidin 3-glucoside protects 3T3-L1 adipocytes against H2O2- or TNF-R induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation. Biochem Pharmacol 75:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Gyo-Nam K, Jung-Geun S, Hae-Dong J (2009) Antioxidant and antidiabetic activity of Dangyuja (Citrus grandis Osbeck) extract treated with Aspergillus saitoi. Food Chem 117:35–41

    Article  Google Scholar 

  • Halliwell B (1997) Antioxidants: the basics – what they are and how to evaluate them. Adv Pharmacol 38:3–20

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Oka K, Akiba M (1989) Effects of synthetic and naturally occurring flavonoids on Na+, K+−ATPase: aspects of structure–activity relationship and action mechanisms. Life Sci 45:1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Hirata T, Fujii M, Akita K et al (2009) Identification and physiological evaluation of the components from citrus fruits as potential drugs for anti-corpulence and anticancer. Bioorg Med Chem 17:25–28

    Article  PubMed  CAS  Google Scholar 

  • Ho S, Wu S, Lin S, Tang Y (2010) Comparison of anti-glycation capacities of several herbal infusions with that of green tea. Food Chem 122:768–774

    Article  CAS  Google Scholar 

  • Holmes-McNary M, Baldwin ABS Jr (2000) Chemopreventive properties of transresveratrol are associated with inhibition of activation of the IкB kinase. Cancer Res 60:3477–3483

    PubMed  CAS  Google Scholar 

  • Horowitz R, Gentili B (1977) Flavonoids constituents of citrus. In: Nagy S, Shaw PE, Veldhuis MK (eds) Citrus science and technology, vol 1. AVI Publishing, Westport, pp 397–426

    Google Scholar 

  • Hwang SL, Yen GC (2008) Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. J Agric Food Chem 56:859–864

    Article  PubMed  CAS  Google Scholar 

  • Iwase Y, Takemura Y, Ju-ichi M et al (1999) Inhibitory effect of Epstein-Barr virus activation by citrus fruits, a cancer chemopreventor. Cancer Lett 139:227–236

    Article  PubMed  CAS  Google Scholar 

  • Jeon SM, Bok SH, Jang MK et al (2001) Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 69:2855–2866

    Article  PubMed  CAS  Google Scholar 

  • Jung UJ, Lee MK, Park YB et al (2006) Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol 38:1134–1145

    Article  PubMed  CAS  Google Scholar 

  • Kandaswami C, Perkins E, Soloniuk DS et al (1991) Antiproliferative effects of citrus flavonoids on a human squamous cell carcinoma in vitro. Cancer Lett 56:147–152

    Article  PubMed  CAS  Google Scholar 

  • Kanno SI, Shouji A, Asou K et al (2003) Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J Pharmacol Sci Jpn Pharmacol Soc 92:166–170

    CAS  Google Scholar 

  • Kaur C, Kapoor HC (2001) Antioxidants in fruits and vegetables – the millennium’s health. Int J Food Sci Technol 36(7):703–725

    Article  CAS  Google Scholar 

  • Kim J, Guddadarangavvanahally K, Uckoo RM, Patil BS (2011) Evaluation of chemopreventive and cytotoxic effect of lemon seed extracts on human breast cancer (MCF-7) cells. Food Chem Toxicol. doi:10.1016/j.fct.2011.10.057

  • Larocca LM, Piantelli M, Leone G et al (1990) Type II oestrogen binding sites in acute lymphoid and myeloid leukaemias: growth inhibitory effect of oestrogen and flavonoids. Br J Haematol 75:489–495

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220

    Article  CAS  Google Scholar 

  • Lewinsohn E, Berman E, Mazur Y et al (1989) (7) Glucosilation and (1–6) rhamnosylation of exogeneous flavanones by undifferentiated citrus cell cultures. Plant Sci 61:23–28

    Article  CAS  Google Scholar 

  • Li Y, Ou-Lee TM, Raba R et al (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–175

    PubMed  CAS  Google Scholar 

  • Li JM, Che CT, Lau CB et al (2006) Inhibition of intestinal and renal Na+-glucose cotransporter by naringenin. Int J Biochem Cell Biol 38:985–995

    Article  PubMed  CAS  Google Scholar 

  • Londoño-Londoño J, Delima VR, Lara O et al (2010) Clean recovery of antioxidant flavonoids from citrus peel: optimizingan aqueous ultrasound-assisted extraction method. Food Chem 119:81–87

    Article  Google Scholar 

  • Lu Y, Zhao WZ, Chang Z et al (2004) Procyanidins from grape seeds protect against phorbol ester-induced oxidative cellular and genotoxic damage. Acta Pharmacol Sin 25:1083–1089

    PubMed  CAS  Google Scholar 

  • Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  PubMed  CAS  Google Scholar 

  • Manach C, Regerat F, Texier O et al (1996) Bioavailability, metabolism and physiological impact of 4- oxo-flavonoids. Nutr Res 16:517–544

    Article  CAS  Google Scholar 

  • Manthey JA, Grohman K (2001) Phenols in citrus peel by products: concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J Agric Food Chem 49:3268–3273

    Article  PubMed  CAS  Google Scholar 

  • Martynez G, Delgado R, Perez G et al (2000) Evaluation of the in vitro antioxidant activity of Mangifera indica L. extract (Vimang). Phytother Res 14:424–427

    Article  Google Scholar 

  • Mata Bilbao ML, Andres-Lacueva C, Uregui O et al (2007) Determination of flavonoids in a citrus fruit extract by LC-DAD and LC-MS. Food Chem 101:1742–1747

    Article  CAS  Google Scholar 

  • Matsubara Y, Kumamoto H, Iizuka Y et al (1985) Structure and hypotensive effect of flavonoid glycosides in citrus unshiu peelings. Agric Biol Chem 49:909–914

    Article  CAS  Google Scholar 

  • Merken HM, Beecher GR (2000) Measurement of food flavonoids by high-performance liquid chromatography: a review. J Agric Food Chem 48:577–599

    Article  PubMed  CAS  Google Scholar 

  • Middleton E, Kandaswami C (1994) Potential health-promoting properties of citrus flavonoids. Food Technol 48:115–119

    CAS  Google Scholar 

  • Miyata M, Smith JD (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and β-amyloid peptides. Nat Genet 14:55–61

    Article  PubMed  CAS  Google Scholar 

  • Montanari A, Chen J, Widmer W (1998) Citrus flavonoids: a review of past biological activity against disease. In: Manthey JA, Buslig BS (eds) Flavonoids in the living system. Plenum Press, New York, pp 103–113

    Chapter  Google Scholar 

  • Nandakumar N, Jayaprakash R, Rengarajan T et al (2011) Hesperidin, a natural citrus flavonoglycoside, normalizes lipid peroxidation and membrane bound marker enzymes in 7, 12-Dimethylbenz (a) anthracene induced experimental breast cancer rats. Biomed Prev Nutr. doi:10.1016/j.bionut 2011.06.004

  • Neergheen VS, Bahorun T (2009) Therapeutic relevance of dietary polyphenols as natural antioxidants and modulators of cell signal transduction pathways in cancer and other degenerative diseases. In: Farombi EO (ed) Nutritional antioxidants in cancer and degenerative diseases. Transworld Research Network, Trivandrum, pp 131–152

    Google Scholar 

  • Nogata Y, Sakamoto K, Shiratsuchi H et al (2006) Flavonoid composition of fruit tissues of citrus species. Biosci Biotechnol Biochem 70:178–192

    Article  PubMed  CAS  Google Scholar 

  • Park GL, Avery SM, Byers JL et al (1983) Identification of bioflavonoids from citrus. Food Technol 37:98–105

    CAS  Google Scholar 

  • Pashikanti S, de Alba DR, Boissonneault GA et al (2010) Rutin metabolites: novel inhibitors of nonoxidative advanced glycation end products. Free Radic Biol Med 48:656–663

    Article  PubMed  CAS  Google Scholar 

  • Patil JR, Chidambara Murthy KN, Jayaprakasha GK et al (2009) Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. J Agric Food Chem 57:10933–10942

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Jiménez J, Arranz S, Tabernero M et al (2008) Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expression of results. Food Res Int 41:274–285

    Article  Google Scholar 

  • Peterson G, Barnes S (1993) Genistein and biochain A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 22:335–345

    Article  PubMed  CAS  Google Scholar 

  • Peterson JJ, Beecher GR, Bhagwat SA et al (2006a) Flavanones in grapefruit, lemons, and limes: a compilation and review of the data from the analytical literature. J Food Compos Anal 19:74–80

    Article  Google Scholar 

  • Peterson JJ, Dwyer JT, Beecher GR et al (2006b) Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. J Food Compos Anal 19:66–73

    Article  Google Scholar 

  • Prior RI, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  PubMed  CAS  Google Scholar 

  • Prost M (1992) Process for the determination by means of free radicals of the antioxidant properties of a living organism or a potentially agressive agents. US Patent 5,135,850, 4 Aug 1992

    Google Scholar 

  • Ramful D, Tarnus E, Philippe R et al (2010a) Citrus fruit extracts reduces AGEs- and H2O2-induced oxidative stress in human adipocytes. J Agric Food Chem 58:11119–11129

    Article  CAS  Google Scholar 

  • Ramful D, Bahorun T, Bourdon E et al (2010b) Bioactive, phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: potential prophylactic ingredients for functional foods application. Toxicology 278:75–87

    Article  PubMed  CAS  Google Scholar 

  • Ramful D, Tarnus E, Aruoma OI et al (2011) Polyphenolics, Vitamin C composition and antioxidant propensities of Mauritian citrus fruit pulps. Food Res Int 44:2088–2099

    Article  CAS  Google Scholar 

  • Roche M, Rondeau P, Singh NR et al (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  PubMed  CAS  Google Scholar 

  • Roche M, Tarnus E, Rondeau P et al (2009) Effects of nutritional antioxidants on AAPH- or AGEs-induced oxidative stress in human SW872 liposarcoma cells. Cell Biol Toxicol 25:635–664

    Article  PubMed  CAS  Google Scholar 

  • Rousseff RL, Martin SF, Youtsef CO (1987) Quantitative survey of narirutin, naringin, hesperidin and neohesperidin in citrus. J Agric Food Chem 35:1027–1030

    Google Scholar 

  • Samman S, Lyons Wall PM, Cook NC (1998) Flavonoids and coronary heart disease: dietary perspectives. In: Rice-Evans CA, Packer L (eds) Flavonoids in health and disease. Marcel Dekker, New York, pp 469–482

    Google Scholar 

  • Scambia G, Ranelletti FO, Benedetti-Panici P et al (1990) Inhibitory effect of quercetin on OVCA 433 cells and presence of type II oestrogen binding sites in primary ovarian tumors and cultured cells. Br J Cancer 62:942–946

    Article  PubMed  CAS  Google Scholar 

  • So FV, Guthrie N, Chambers AF et al (1996) Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 26:167–181

    Article  PubMed  CAS  Google Scholar 

  • Soobrattee MA, Bahorun T, Neergheen VS et al (2008) Phenolics content and antioxidant actions of the Rubiaceae, Ebenaceae, Celastraceae, Erythroxylaceae and Sterculaceae families of Mauritian endemic plants. Toxicol In Vitro 22:45–56

    Article  PubMed  CAS  Google Scholar 

  • Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol 105:881–889

    Article  PubMed  CAS  Google Scholar 

  • Stern DM, Yan SD, Yan SF et al (2002) Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev 1:1–15

    Article  PubMed  CAS  Google Scholar 

  • Suolinna EM, Buchsbaum RN, Racker E (1975) The effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Res 35:1865–1872

    PubMed  CAS  Google Scholar 

  • Takamatsu S, Galal AM, Ross SA et al (2003) Antioxidant effect of flavonoids on DCF production in HL-60 cells. Phytother Res 17:963–966

    Article  PubMed  CAS  Google Scholar 

  • Tarnus E, Wassef H, Carmel JF et al (2009) Apolipoprotein E limits oxidative stress-induced cell dysfunctions in human adipocytes. FEBS Lett 583:2042–2048

    Article  PubMed  CAS  Google Scholar 

  • Tomás-Barberán FA, Clifford MN (2000) Flavanones, chalcones and dihydrochalcones – nature, occurrence and dietary burden. J Sci Food Agric 80:1073–1080

    Article  Google Scholar 

  • Tripoli E, La Guardia M, Giammanco S et al (2007) Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem 104:466–479

    Article  CAS  Google Scholar 

  • Tsang SY, Tam SC, Bremner L et al (1996) Copper-1,10-phenanthrolin induces internucleosomal DNA fragmentation in HepG2 cells, resulting from direct oxidation by the hydroxyl radical. Biochem J 317:13–16

    PubMed  CAS  Google Scholar 

  • Valentão P, Fernandes E, Carvalho F et al (2002) Antioxidant activity of Hypericum androsaemum infusion: scavenging activity against superoxide radical, hydroxyl radical and hypochlorous acid. Biol Pharm Bull 25(10):1320–1327

    Article  PubMed  Google Scholar 

  • Van der Sluis AA, Dekker M, De Jager A et al (2001) Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agric Food Chem 49:3606–3613

    Article  PubMed  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  PubMed  CAS  Google Scholar 

  • Wang AY, Zhou MY, Lin WC (2011) Antioxidative and anti-inflammatory properties of citrus sulcata extracts. Food Chem 124:958–963

    Article  CAS  Google Scholar 

  • Wassef H, Bernier L, Davignon J et al (2004) Synthesis and secretion of apoC-I and apoE during maturation of human SW872 liposarcoma cells. J Nutr 134:2935–2941

    PubMed  CAS  Google Scholar 

  • Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55:8896–8907

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Sakai T, Hosokawa N et al (1990) The effect of quercetin on cell-cycle progression and growth of human gastric cancer cells. FEBS Lett 260:10–13

    Article  PubMed  CAS  Google Scholar 

  • Yoshimizu N, Otani Y, Saikawa Y et al (2004) Anti-tumour effects of nobiletin, a citrus flavonoid, on gastric cancer include: antiproliferative effects, induction of apoptosis and cell cycle deregulation. Aliment Pharmacol Ther 20:95–101

    Article  PubMed  CAS  Google Scholar 

  • Zechner R, Moser R, Newman TC et al (1991) Apolipoprotein E gene expression in mouse 3T3-L1 adipocytes and human adipose tissue and its regulation by differentiation and lipid content. J Biol Chem 266:10583–10588

    PubMed  CAS  Google Scholar 

  • Zhao X, Xue CH, Li Z-J et al (2004) Antioxidant and hepatoprotective activities of low molecular weight sulphated polysaccharide from Laminaria japonica. J Appl Phycol 16:111–115

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University of Mauritius, University of Réunion (France) and Chhatrapati Shahu Ji Maharaj University Kanpur (India) for their full support. One of the authors (TB) is particularly thankful to Mr Gaurav Gaur, the Federation of Indian Chambers of Commerce & Industry (FICCI) and the Government of India for the award of the CV Raman International Senior Fellowship for African Researchers. Part of this work has been carried out in the context of this fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theeshan Bahorun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bahorun, T. et al. (2012). Phytophenolic Nutrients in Citrus: Biochemical and Molecular Evidence. In: Srivastava, A. (eds) Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_3

Download citation

Publish with us

Policies and ethics