Skip to main content

Nitrogen in Citrus: Signal, Nutrient, and Use Efficiency

  • Chapter
  • First Online:
  • 3132 Accesses

Abstract

Nitrogen (N) is the most important nutrient for growth, fruit yield, and quality of citrus plants. In order to reduce both the requirements for costly nitrogen fertilizers and environmental pollution of soil and water, the improvement of the nitrogen use efficiency (NUE) on citrus plants is fundamental in sustainable agriculture. In this chapter, a critical overview on the definitions of NUE and its components, nitrogen uptake (NUpE), and nitrogen utilization efficiency (NUtE) was provided, together with current knowledge and future challenges to understand and manipulate NUE in citrus plants. Further, the different N fertilizer use strategy in combination with irrigation to increase the NUE in citrus species was explained. The nitrogen content, the removal and the partitioning among the citrus organs, and the N availability in citrus soils provided a comprehensive picture of the N economy in citrus trees and soil orchards, and the basis of the NUE. However, an important approach for improving the NUE in citrus plants was to understand the regulation of the morpho-physiological and molecular mechanisms controlling plant nitrogen economy such as nitrogen uptake, translocation, assimilation, and remobilization. This approach accompanied by new techniques in molecular biology, root biology, plant-soil interactions, and modeling will provide an accurate criteria to discriminate between the nitrogen-efficient and inefficient citrus plants. Finally, the future challenges for improving NUE in citrus species considering both the “agronomic” and “physiological” approaches were discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akao S, Kubota S, Hayashida M (1978) Utilization of reserve nitrogen, especially autumn nitrogen, by Satsuma mandarin trees during the development of spring shoots (I). J Jpn Soc Hortic Sci 47:31–38

    Article  Google Scholar 

  • Alva AK, Paramasivam S (1998) An evaluation of nutrient removal by citrus fruits. Proc Fla State Hortic Soc 111:126–128

    Google Scholar 

  • Alva AK, Tucker DPH (1993) Evaluation of a resin coated nitrogen fertilizer for young citrus trees on a deep sand. Proc Fla State Hortic Soc 106:4–8

    Google Scholar 

  • Alva AK, Tucker DPH (1999) Soils and citrus nutrition. In: Timmer LW, Duncan LW (eds) Citrus health management. APS Press, St. Paul, pp 59–71

    Google Scholar 

  • Alva AK, Paramasivam S, Graham WD (1998) Impact of nitrogen management practices on nutritional status and yield of Valencia orange trees and groundwater nitrate. J Environ Qual 27:904–910

    Article  CAS  Google Scholar 

  • Alva AK, Paramasivam S, Obreza TA et al (2006) Nitrogen best management practice for citrus trees. I. Fruit yield, quality, and leaf nutritional status. Sci Hortic 107:233–244

    Article  CAS  Google Scholar 

  • Balingar VC, Ducan RR, e Fageria NK (1990) Soil-plant interaction on nutrient use efficiency in plants. In: Balingar VC, e Ducan RR (eds) Crops as enhancers of nutrient use. Academic, San Diego, pp 351–373

    Google Scholar 

  • Beman JM, Arrigo K, Matson PM (2005) Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434:211–214

    Article  Google Scholar 

  • Benton JJ Jr (1998) Plant nutrition. Manual. CRC Press LLC, Boca Raton

    Google Scholar 

  • Blair G (1993) Nutrient-efficiency – what do we really mean? Dev Plant Soil Sci 50:205–213

    Google Scholar 

  • Boaretto AE, Ueta FZ, Trivelin PCO et al (2006) Efficiency of nitrogen fertilization on citrus orchards. In: Proceedings of the Vth international symposium in mineral nutrition of fruit plants, Talca, Chile. Acta Hortic 721:331–336

    Google Scholar 

  • Boaretto RM, Mattos DJ, Quaggio JA et al (2010) Nitrogen-15 uptake and distribution in two citrus species. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane, Australia, pp 156–159

    Google Scholar 

  • Boman BJ (1996) Fertigation versus conventional fertilisation of Flatwoods grapefruit. Fertil Res 44:123–128

    Article  Google Scholar 

  • Camañes G, Cerezo M, Primo-Millo E et al (2007) Ammonium transport and CitAMT1 expression are regulated by light and sucrose in Citrus plants. J Exp Bot 58(11):2811–2825

    Article  PubMed  Google Scholar 

  • Cantarella H, Mattos D Jr, Quaggio JA et al (2003) Fruit yield of Valencia sweet orange fertilized with different N sources and the loss of applied N. Nutr Cycl Agroecosyst 67:215–223

    Article  CAS  Google Scholar 

  • Caradus JR (1990) Mechanisms improving nutrient use by crop and herbage legumes. In: Balingar VC, e Ducan RR (eds) Crops as enhancers of nutrient use. Academic, San Diego, pp 253–311

    Google Scholar 

  • Castle WS (2010) A career perspectives on citrus rootstock, their development, and commercialization. Hortic Sci 45(1):11–15

    Google Scholar 

  • Castle WS, Youtsey CO (1977) Root system characteristics of citrus nursery trees. Proc Fla State Hortic Soc 90:39–44

    Google Scholar 

  • Cerezo M, García-Augustín P, Serna MD et al (1997) Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. Plant Sci 126:105–112

    Article  CAS  Google Scholar 

  • Cerezo M, Flors V, Legaz F et al (2000) Characterization of the low affinity transport system for NO3− uptake by Citrus roots. Plant Sci 160:95–104

    Article  PubMed  CAS  Google Scholar 

  • Cerezo M, Tillard P, Gojon A et al (2001) Characterization and regulation of ammonium transport systems in Citrus plants. Planta 214:97–105

    Article  PubMed  CAS  Google Scholar 

  • Chapman HD (1968) Mineral nutrition of citrus. In: Reuther W, Batchelor LD, Webber HJ (eds) The citrus industry, vol 2, Revisedth edn. University of California, Division of Agricultural Science, Berkeley, pp 127–189

    Google Scholar 

  • Clark RB (1990) Physiology of cereals for mineral nutrient uptake, use and efficiency. In: Balingar VC, Duncan RR (eds) Crops as enhancers of nutrient use. Academic, San Diego, pp 131–209

    Google Scholar 

  • Coque M, Martin A, Veyrieras J et al (2008) Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet 117:729–747

    Article  PubMed  CAS  Google Scholar 

  • Dasberg S (1987) Nitrogen fertilization in citrus orchards. Plant Soil 100:1–9

    Article  CAS  Google Scholar 

  • Dasberg S, Erner Y, Bielorai H (1984) Nitrogen balance in a citrus orchard. J Environ Qual 13:353–356

    Article  Google Scholar 

  • Dasberg S, Bar-Akiva A, Spazisky S et al (1988) Fertigation versus broadcasting in an orange grove. Fertil Res 15:147–154

    Article  Google Scholar 

  • Davies FS (1996) Literature review of research related to nitrogen nutrition, fertilization, and groundwater pollution of citrus. Technical report. Florida Department of Agriculture and Consumer Services, Tallahassee, FL

    Google Scholar 

  • Davies FS, Albrigo LG (1994) Citrus. CABI Publishing, Wallingford, Oxfordshire, UK

    Google Scholar 

  • Davies FS, Zalman GR (2002) Fertilization, rootstocks, growth and yields of young ‘Rohde Red’ Valencia orange trees. Proc Fla State Hortic Soc 115:14–17

    Google Scholar 

  • Dou H, Alva AK (1998) Nitrogen uptake and growth of two citrus rootstock seedlings in a sandy soil receiving different controlled-release fertilizer sources. Biol Fertil Soil 26:169–172

    Article  CAS  Google Scholar 

  • Elliot GC, Laüchli A (1985) Phosphorus efficiency and phosphate–iron interactions in maize. Agron J 77:399–403

    Article  Google Scholar 

  • Embleton TW, Jones WW (1978) Nitrogen fertilizer management programs, nitrate pollution potential and orange productivity. In: Nielsen DR, MacDonald TG (eds) Nitrogen in the environment, vol 11. Academic, New York, pp 275–297

    Google Scholar 

  • Embleton TW, Matsumura M, Stolzy LH et al (1986) Citrus nitrogen fertilizer management, groundwater pollution, soil salinity, and nitrogen balance. Appl Agric Res 1:57–64

    Google Scholar 

  • Feigenbaum S, Bielorai H, Erner Y et al (1987) The fate of 15N labelled nitrogen applied to mature citrus trees. Plant Soil 97:179–187

    Article  CAS  Google Scholar 

  • Fernàndez R, Lòpez J, Navarrete P (1998) Map of nitrate concentration in the underground waters in Spain. Geominer Technologic Institute of Spain (ITGE), Ministry of Environment, Madrid

    Google Scholar 

  • Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118:383–389

    Article  Google Scholar 

  • Fitter AH, Stickland TR, Harvey ML et al (1991) Architectural analysis of plant root systems. I. Architectural correlates of exploitation efficiency. New Phytol 118:375–382

    Article  Google Scholar 

  • Forde BG, Clarkson DT (1999) Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Adv Bot Res 30:1–90

    Article  CAS  Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32:1272–1283

    Article  PubMed  CAS  Google Scholar 

  • Gerloff GC, Gabelman WH (1983) Genetic basis of inorganic plant nutrition. In: Laüchli A, Bilieski RL (eds) Encyclopaedia of plant physiology, vol 15B, New series. Springer, New York, pp 453–480

    Google Scholar 

  • Glass ADM (1989) Physiological mechanisms involved with genotypic differences in ion adsorption and utilization. Hortic Sci 24:559–564

    Google Scholar 

  • Gourley CJP, Allan DL, Russelle MP (1994) Plant nutrient efficiency: a comparison of definitions and suggested improvement. Plant Soil 158:29–37

    Article  CAS  Google Scholar 

  • Hammami A, Rezgui S, Hellali R (2010) Leaf nitrogen and potassium concentrations for optimum fruit production, qualità and biomass tree growth in Clementine mandarin under Mediterranean climate. J Hortic Forest 2(7):161–170

    Google Scholar 

  • Hanlon EA, Obreza TA, Alva AK (1995) Tissue and plant analysis. In: Tucker DPH, Alva AK, Jackson LK (eds) Nutrition of Florida citrus trees. University of Florida, IFAS, Lake Alfred, pp 13–16

    Google Scholar 

  • He ZL, Alva AK, Calvert DV et al (1999) Effects of nitrogen fertilization of grapefruit trees on soil acidification and nutrient availability in a Riviera fine sand. Plant Soil 206:11–19

    Article  Google Scholar 

  • He ZL, Calvert DV, Alva AK et al (2003) Thresholds of leaf nitrogen for optimum fruit production and quality in grapefruit. Soil Sci Soc Am J 67:583–588

    Article  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B et al (2007) The challenge of improving nitrogen use efficiency in crop plants, towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58(9):2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Jones WW, Embleton TW (1969) Development and current status of citrus leaf analysis as a guide to fertilization in California. In: Proceedings of the first international citrus symposium, Riverside, vol 3, pp 1669–1671

    Google Scholar 

  • Kato T (1981) Major nitrogen compounds transported in xylem vessels from roots to top in citrus tree. Physiol Plant 52:275–279

    Article  CAS  Google Scholar 

  • Kato T (1986) Nitrogen metabolism and utilization in citrus. Hortic Rev 8:181–216

    Google Scholar 

  • Keating BA, Carberry PS, Bindraban PS et al (2010) Eco-efficient agriculture: concepts, challenges, and opportunities. Crop Sci 50:S109–S119

    Article  Google Scholar 

  • Kohli RR, Srivastava AK, Huchche AD et al (1998) Diagnosis of leaf nutrient levels for optimum productivity of Citrus reticulate Blanco grow in black clay soils under a sub-humid tropical climate. Trop Agric Res Ext 1(2):81–86

    Google Scholar 

  • Koo RCJ (1986) Controlled-release sources of nitrogen for bearing citrus. Proc Fla State Hortic Soc 99:46–48

    Google Scholar 

  • Koo RCJ (1988) Fertilization and irrigation effects of fruit quality. In: Ferguson JJ, Wardowski WF (eds) Factors affecting fruit quality – citrus short course, proceedings 97. University of Florida, Cooperative Extension Service, Gainesville, pp 35–42

    Google Scholar 

  • Koo RCJ, Anderson CA, Stewart I et al (1984) Recommended fertilizers and nutritional sprays for citrus. Fla Agric Exp Stn Bull 536D

    Google Scholar 

  • Kubota S, Kato T, Akao S et al (1976) 15N absorption and translocation by Satsumas mandarin trees. IV. Behaviour of nitrogen supplied in early summer. Bull Shikoku Agric Exp Stn 29:55–66

    CAS  Google Scholar 

  • Lamb ST, Graham WD, Harrison CB et al (1999) Impact of alternative citrus management practices on groundwater nitrate in the Central Florida Ridge. Part I. Field investigation. Trans ASAE 42(6):1653–1668

    Google Scholar 

  • Lea-Cox JD, Syvertsen JP (1993) Salinity reduces water use and nitrate-N-use efficiency of citrus. Ann Bot 72:47–54

    Article  CAS  Google Scholar 

  • Lea-Cox JD, Syvertsen JP (1996) How nitrogen supply affects growth and nitrogen uptake, use efficiency, and loss from citrus seedlings. J Am Soc Hortic Sci 119:195–201

    Google Scholar 

  • Lea-Cox JD, Syvertsen JP, Graetz DA (2001) Springtime 15nitrogen uptake, partitioning, and leaching losses from young bearing citrus trees of differing nitrogen status. J Am Soc Hortic Sci 126:242–251

    Google Scholar 

  • Legaz F, Primo-Millo E (1988) Guidelines for citrus fertilization. Technical report, No 5–88. Department of the Agriculture, Fish and Food of the Valencian Government, Valencia, Spain (in Spanish)

    Google Scholar 

  • Legaz F, Primo-Millo E, Primo-Yu´fera E et al (1983) Dynamics of 15N-labeled nitrogen nutrients in Valencia orange trees. In: Matsumoto K, Oogaki C, Kuzaki I et al (eds) Proceedings of the international society of citriculture, V international citrus congress, Tokyo, Japan, 9–12 Nov 1981, vol 2, pp 575–582

    Google Scholar 

  • Legaz F, Serna MD, Primo-Millo E (1995) Mobilization of the reserve N in citrus. Plant Soil 173:205–210

    Article  CAS  Google Scholar 

  • London JG (2005) Nitrogen study fertilizes fears of pollution. Nature 433:791

    Article  Google Scholar 

  • Lynch JP (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed  CAS  Google Scholar 

  • Malavolta E (1992) Leaf analysis in Brazil – present and perspectives. In: Tribulato E, Gentile A, Refrigerato G (eds) Proceedings of the international society of citriculture, Catania, Italy, 8–13 Mar 1992, vol 2, pp 570–574

    Google Scholar 

  • Martìnez JM, Bañuls J, Quiñones A et al (2002) Fate and transformations of 15N labeled nitrogen applied in spring to Citrus trees. J Hortic Sci Biotechnol 77:361–367

    Google Scholar 

  • Mattos D Jr, Graetz DA, Alva AK (2003) Biomass distribution and nitrogen-15 partitioning in citrus trees on a sandy entisol. Soil Sci Soc Am J 67:555–563

    Article  CAS  Google Scholar 

  • Maust BE, Williamson JG (1994) Nitrogen nutrition of containerized citrus nursery plants. J Am Soc Hortic Sci 119:195–201

    Google Scholar 

  • Melgar JC, Schumann AW, Syvertsen JP (2010) Fertigation frequency affects growth and water and nitrogen use efficiencies of Swingle Citrumelo citrus rootstock seedlings. HortSci 45(8):1255–1259

    Google Scholar 

  • Menino MR, Carranca C, de Varennes A (2007) Distribution and remobilization of nitrogen in young non-bearing orange trees grown under Mediterranean conditions. J Plant Nutr 30:1083–1096

    Article  CAS  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1987) Development of nitrogen-efficient prolific hybrids of maize. Crop Sci 27:181–186

    Article  CAS  Google Scholar 

  • Morgan KT, Wheaton TA, Castle WS et al (2009) Response of young and maturing citrus trees grown on a sandy soil to irrigation scheduling, nitrogen fertilizer rate, and nitrogen application method. HortSci 44(1):145–150

    Google Scholar 

  • Obreza TA, Morgan KT (2008) Nutrition of Florida citrus trees. SL253. University of Florida, Lake Alfred

    Google Scholar 

  • Quaggio JA, Cantarella H, van Raij B (1998) Phosphorus and potassium soil test and nitrogen leaf analysis as a base for citrus fertilization. Nutr Cycl Agroecosyst 52:67–74

    Article  Google Scholar 

  • Quiñones A, Bañuls J, Primo-Millo E (2003) Effects of 15N application frequency on nitrogen uptake efficiency in Citrus trees. J Plant Physiol 160:1429–1434

    Article  PubMed  Google Scholar 

  • Quiñones A, Bañuls J, Primo-Millo E et al (2005) Recovery of the 15N-labeled fertiliser in Citrus trees in relation with timing of application and irrigation system. Plant Soil 268:367–376

    Article  Google Scholar 

  • Quiñones A, Màrtinez-Alcàntara B, Legaz F (2007) Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees. Agric Ecosyst Environ 122:399–409

    Article  Google Scholar 

  • Ramos C (1996) Effect of agricultural practices on the nitrogen losses to the environment. Fertil Res 43:183–189

    Article  Google Scholar 

  • Ramos C, Agut A, Lidòn AL (2002) Nitrate leaching in important crops of the Valencian community region (Spain). Environ Pollut 118:215–223

    Article  PubMed  CAS  Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265

    Article  CAS  Google Scholar 

  • Saric MR (1982) Theoretical and practical approaches to the genetic specificity of mineral nutrition of plants. In: Saric MR (ed) Genetic specificity of mineral nutrition of plants. Proceedings of the international symposium, Belgrade, pp 9–20

    Google Scholar 

  • Sattelmacher B, Gerendas J, Thoms K et al (1993) Interaction between root growth and mineral nutrition. Environ Exp Bot 33:63–73

    Article  CAS  Google Scholar 

  • Saurbeck DR, Helal HM (1990) Factors affecting the nutrient efficiency of plants. In: El Bassam N, Dambroth M, Loghman BC (eds) Genetic aspects of plant mineral nutrition. Kluwer Academic Publishers, Dordrecht, pp 11–16

    Chapter  Google Scholar 

  • Scholberg JMS, Parsons LR, Wheaton TA et al (2002) Soil temperature, nitrogen concentration, and residence time affect nitrogen uptake efficiency in citrus. J Environ Qual 31:759–768

    Article  PubMed  CAS  Google Scholar 

  • Schumann AW, Fares A, Alva AK et al (2003) Response of Hamlin orange to fertilizer source, annual rate and irrigated area. Proc Fla State Hortic Soc 116:256–260

    Google Scholar 

  • Sorgonà A, Cacco G (2002) Linking the physiological parameters of nitrate uptake with root morphology and topology in wheat (Triticum durum Desf.) and in citrus rootstock (Citrus volkameriana Ten & Pasq). Can J Bot 80:494–503

    Article  Google Scholar 

  • Sorgonà A, Abenavoli MR, Cacco G (2005) A comparative study between two citrus rootstocks: effect of nitrate on the root morpho-topology and net nitrate uptake. Plant Soil 270:257–267

    Article  Google Scholar 

  • Sorgonà A, Abenavoli MR, Gringeri PG et al (2006) A comparison of nitrogen use efficiency definitions in Citrus rootstocks. Sci Hortic 109:389–393

    Article  Google Scholar 

  • Sorgonà A, Abenavoli MR, Gringeri PG (2007) Comparing morphological plasticity of root orders in slow- and fast-growing citrus rootstocks supplied with different nitrate levels. Ann Bot 100:1287–1296

    Article  PubMed  Google Scholar 

  • Sorgonà A, Cacco G, Di Dio L et al (2010) Spatial and temporal patterns of net nitrate uptake regulation and kinetics along the tap root of Citrus aurantium. Acta Physiol Plant 32:683–693

    Article  Google Scholar 

  • Sorgonà A, Lupini A, Abenavoli MR (2011) Nitrate use-efficiency: a morphological analysis of the above- and below-ground functional traits in two citrus rootstocks. Glob J Plant Ecophysiol 1(1):26–37

    Google Scholar 

  • Spiegel-Roy P, Goldschmidt EE (1996) Biology of Citrus. Cambridge University Press, New York

    Book  Google Scholar 

  • Stulen I, Prez-Soba M, De Kok LJ et al (1998) Impact of gaseous nitrogen deposition on plant functioning. New Phytol 139:61–70

    Article  CAS  Google Scholar 

  • Syvertsen JP, Dunlop JM (2004) Hydrophilic gel amendments to sand soil can increase growth and nitrogen uptake efficiency of citrus seedlings. HortSci 39(2):267–271

    CAS  Google Scholar 

  • Syvertsen JP, Jifon JL (2001) Frequent fertigation does not affect citrus tree growth, fruit yield, nitrogen uptake, and leaching losses. Proc Fla State Hortic Soc 114:88–93

    Google Scholar 

  • Syvertsen JP, Sax SM (1999) Fertigation frequency, wetting patterns and nitrate leaching from lysimeter-grown citrus trees. Proc Fla State Hortic Soc 112:9–14

    Google Scholar 

  • Syvertsen JP, Smith ML (1996) Nitrogen uptake efficiency and leaching losses from lysimetric-grown citrus trees fertilized at three nitrogen rates. J Am Soc Hortic Sci 121:57–62

    CAS  Google Scholar 

  • Terblanche JH, Du Plessis SF (1992) Summary of workshop on leaf and soil analysis as a tool for determining fertilizer requirements of citrus. In: Tribulato E, Gentile A, Refrigerato G (eds) Proceedings of the international society of citriculture, Catnia, Italy, 8–13 Mar 1992, vol 2, pp 744–745

    Google Scholar 

  • Thung M (1988) Phosphorus: a limiting nutrient in bean (Phaseolus vulgaris L.) production in Latin America and field screening for efficiency and response. In: El Bassam N, Dambroth M, Loghman BC (eds) Genetic aspects of plant mineral nutrition. Kluwer Academic, Dordrecht, pp 501–521

    Google Scholar 

  • Tian Q, Chen F, Zhang F et al (2007) Genotypic difference in nitrogen acquisition ability in maize plants is related to the coordination of leaf and root growth. J Plant Nutr 29(2):317–330

    Article  Google Scholar 

  • Tischner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23:1005–1024

    Article  CAS  Google Scholar 

  • Tucker DPH, Alva AK, Jackson LK et al (1995) Nutrition of Florida citrus trees. Publication # SP 169. University of Florida-IFAS, Gainesville

    Google Scholar 

  • Walch-Liu P, Filleur S, Gan Y et al (2005) Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. Photosynth Res 83:239–250

    Article  PubMed  CAS  Google Scholar 

  • Wallace A (1953) Nitrogen absorption and translocation by citrus cuttings at different root temperatures. Proc Am Soc Hortic Sci 61:89–94

    CAS  Google Scholar 

  • Weinbaum S, Van Kessel C (1998) Quantitative estimates of uptake and internal cycling of 14N-labeled fertilizer in mature walnut trees. Tree Physiol 18:795–801

    Article  PubMed  Google Scholar 

  • Weinbaum SA, Klein I, Broadbent FE et al (1984) Effects of time of nitrogen application and soil texture on the availability of isotopically labeled fertilizer nitrogen to reproductive and vegetative tissue of mature almond tree. J Am Soc Hortic Sci 109:339–343

    Google Scholar 

  • Weinert TL, Thompson TL, White SA (2002) Nitrogen fertigation of young navel oranges: growth, N status, and uptake of fertilizer N. HortSci 37(2):334–337

    Google Scholar 

  • Wutscher HK (1989) Alteration of fruit tree nutrition through rootstocks. HortSci 24(4):578–583

    Google Scholar 

  • Zekri M, Obreza T (2003) Macronutrient deficiencies in citrus: nitrogen, phosphorus, and potassium, SL210. Florida Cooperative Extension Service, Institute of Food and Agricultural Science, University of Florida, Gainesville. Downloaded at http://edis.ifas,ufl.edu

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Sorgonà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sorgonà, A., Abenavoli, M.R. (2012). Nitrogen in Citrus: Signal, Nutrient, and Use Efficiency. In: Srivastava, A. (eds) Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_16

Download citation

Publish with us

Policies and ethics