Skip to main content

Historic Changes in Terrestrial Carbon Storage

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

Human use of land has reduced the amount of carbon (C) in terrestrial ecosystems, probably since the first use of fire as a tool for clearing land thousands of years ago. Because variations in climate have also affected C storage over this period, it is difficult to attribute long-term changes in terrestrial C to direct human activity. Over the last 150–300 years, however, reconstructions of land use and land-use change suggest that between ∼100 and ∼200 Pg (1 Pg  =  1015 g) C were lost from land, largely from the conversion of forests to agricultural lands. This loss of C over the past century or so is greater than the loss attributable to human activity for all of time before 1850. Most of the loss since 1850 has been from forest biomass, while the loss of C from soil organic matter (SOM) as a result of cultivation is estimated to have contributed ∼25% of the net loss. The restoration of forests on cleared lands could, in theory, re-carbonize the biosphere with 100–200 Pg C; but most of these lands are currently in use and unlikely to be returned to forests. Management practices would have to reverse the centuries-long loss of C.

For most of the last 300 years, the net annual loss of C from land use seems to explain (i.e., is roughly equivalent to) the net terrestrial flux of C to the atmosphere. Starting near the middle of the twentieth century, however, the annual net emissions of C from land use appear to have been offset by a terrestrial C sink not directly related to land use. The explanations for this residual terrestrial sink include carbon dioxide (CO2) fertilization, nitrogen (N) deposition, variations in climate, and, possibly, a centuries-long reduction of natural disturbances. Much of the offsetting C sink is thought to be in forests. The residual C sink indicates that terrestrial ecosystems, despite land use, have removed C from the atmosphere over the last decades. The magnitude of this sink is large relative to the effect human management could have, but recent evidence suggests that the sink may be beginning to saturate. If the residual terrestrial sink were to disappear or become an additional source of C as a result of climate change, managing the global C cycle would be much more difficult than envisioned today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

carbon

SOC:

soil organic carbon

SOM:

soil organic matter

References

  • Ahrends A et al (2010) Predicable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc Natl Acad Sci USA 107:14556–14561

    Article  PubMed  Google Scholar 

  • Archer S, Boutton TW, Hibbard KA (2001) Trees in grasslands: biogeochemical consequences of woody plant expansion. In: Schulze E-D, Harrison SP, Heimann M, Holland EA, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 115–1337

    Google Scholar 

  • Asner GP, Archer S, Hughes RF, James R, Wessman CA (2003) Net changes in regional woody vegetation cover and carbon storage in Texas drylands, 1937–1999. Glob Chang Biol 9:316–335

    Article  Google Scholar 

  • Barford CC et al (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294:1688–1691

    Article  PubMed  CAS  Google Scholar 

  • Berhe AA, Harte J, Harden JW, Torn MS (2007) The significance of the erosion-induced terrestrial carbon sink. Bioscience 57:337–347

    Article  Google Scholar 

  • Bradley BA, Houghton RA, Mustard JF, Hamburg SP (2006) Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob Chang Biol 12:1815–1822

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land-use trends in the conterminous United States, 1950–2000. Ecol Appl 15:1851–1863

    Article  Google Scholar 

  • Canadell JG et al (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870

    Article  PubMed  CAS  Google Scholar 

  • Currie WS, Yanai RD, Piatek KB, Prescott CE, Goodale CL et al (2002) Processes affecting carbon storage in the forest floor and in downed woody debris. In: Kimble JM et al (eds) The potential for U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, Boca Raton, pp 135–157

    Google Scholar 

  • Davidson EA, Ackerman IL (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–193

    Article  CAS  Google Scholar 

  • DeFries RS, Field CB, Fung I, Collatz GJ, Bounoua L (1999) Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochem Cycles 13:803–815

    Article  CAS  Google Scholar 

  • Detwiler RP (1986) Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry 2:67–93

    Article  CAS  Google Scholar 

  • Dommain R, Couwenberg J, Joosten H (2011) Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quaternary Sci Rev 30:999–1010

    Article  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297

    Article  CAS  Google Scholar 

  • Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Philos Trans A Math Phys Eng Sci 369:1010–1035

    Article  Google Scholar 

  • Eve MD, Sperow M, Paustian K, Follett RF (2002) National-scale estimation of changes in soil carbon stocks on agricultural lands. Environ Pollut 116:431–438

    Article  PubMed  CAS  Google Scholar 

  • FAO (2006) Global forest resources assessment 2005. FAO forestry paper 147, Rome

    Google Scholar 

  • FAO (2009) http://faostat.fao.org/site/377/default.aspx#ancor (11/09)

  • FAOSTAT (2009) http://faostat.fao.org/site/377/default.aspx#ancor (11/09)

  • Friedlingstein P, Houghton RA, Marland G et al (2010) Update on CO2 emissions. Nat Geosci 3:811–812

    Article  CAS  Google Scholar 

  • Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophys Res Lett 31:L18211

    Article  Google Scholar 

  • Gitz V, Ciais P (2003) Amplifying effects of land-use change on future atmospheric CO2 levels. Global Biogeochem Cycles 17:1024. doi:10.1029/2002GB001963

    Article  Google Scholar 

  • GLCC2000 (2009). Global land cover characterization, version 1.2. http://edc2.usgs.gov/glcc/glcc_version1.php

  • Gloor M, Sarmiento JL, Gruber N (2010) What can be learned about the carbon cycle climate feedbacks from the CO2 airborne fraction? Atmos Chem Phys 10:7739–7751

    Article  CAS  Google Scholar 

  • Grainger A (2008) Difficulties in tracking the long-term global trend in tropical forest area. Proc Natl Acad Sci USA 105:818–823

    Article  PubMed  CAS  Google Scholar 

  • Grainger A (2009) Measuring the planet to fill terrestrial data gaps. Proc Natl Acad Sci USA 106:20557–20558

    Article  PubMed  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Harmon ME, Ferrell WK, Franklin JF (1990) Effects on carbon storage of conversion of old-growth forests to young forests. Science 247:699–702

    Article  PubMed  CAS  Google Scholar 

  • Harrison KG, Post WM, Richter DD (1995) Soil carbon turnover in a recovering temperate forest. Global Biogeochem Cycles 9:449–454

    Article  CAS  Google Scholar 

  • Hibbard KA, Archer S, Schimel DS, Valentine DW (2001) Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna. Ecology 82:1999–2011

    Article  Google Scholar 

  • Hooijer A et al (2009) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosci Discuss 6:7207–7230

    Article  Google Scholar 

  • Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Appl 13:299–313

    Article  Google Scholar 

  • Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus 51B:298–313

    CAS  Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390

    CAS  Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  CAS  Google Scholar 

  • Houghton RA (2010) How well do we know the flux of CO2 from land-use change? Tellus B62:337–351. doi:10.1111/j.1600-0889.2010.00473.x

    Google Scholar 

  • Houghton RA, Hackler JL (2003) Sources and sinks of carbon from land-use change in China. Global Biogeochem Cycles 17:1034. doi:10.1029/2002GB001970

    Article  Google Scholar 

  • Houghton RA, Hackler JL (2006) Emissions of carbon from land use change in sub-Saharan Africa. J Geophys Res 111:G02003. doi:10.1029/2005JG000076

    Article  Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The U.S. carbon budget: contributions from land-use change. Science 285:574–578

    Article  PubMed  CAS  Google Scholar 

  • Huntington TG (1995) Carbon sequestration in an aggrading forest ecosystem in the southeastern USA. Soil Sci Soc Am J 59:1459–1467

    Article  CAS  Google Scholar 

  • Hurtt GC et al (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Glob Chang Biol 12:1–22

    Article  Google Scholar 

  • Idol TW, Filder RA, Pope PE, Ponder F (2001) Characterization of coarse woody debris across a 100 year chronosequence of upland oak-hickory forests. For Ecol Manage 149:153–161

    Article  Google Scholar 

  • Ingerson A (2010) Carbon storage potential of harvested wood: summary and policy implications. Mitig Adapt Strat Glob Chang. doi:10.1007/s11027-010-9267-5

    Google Scholar 

  • Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626

    Article  PubMed  CAS  Google Scholar 

  • Janssens IA et al (2003) Europe’s terrestrial biosphere absorbs 7–12% of European anthropogenic CO2 emissions. Science 300:1538–1542

    Article  PubMed  CAS  Google Scholar 

  • Jeon SB (2011) The effect of land-use change on the terrestrial carbon budget of New England. PhD dissertation, Boston University

    Google Scholar 

  • Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air Soil Pollut 64:83–120

    Article  CAS  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manage 140:227–238

    Article  Google Scholar 

  • Johnson CM, Zarin DJ, Johnson AH (2000) Post-disturbance above-ground biomass accumulation in global secondary forests. Ecology 81:1395–1401

    Article  Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quaternary Sci Rev 28:3016–3034

    Article  Google Scholar 

  • Kauppi PE, Ausubel JH, Fang J, Mather AS, Sedjo RA, Waggoner PE (2006) Returning forests analyzed with the forest identity. Proc Natl Acad Sci USA 103:17574–17579

    Article  PubMed  CAS  Google Scholar 

  • Klein Goldewijk K (2001) Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochem Cycles 15:417–433

    Article  CAS  Google Scholar 

  • Klein Goldewijk K, Ramankutty N (2004) Land cover change over the last three centuries due to human activities: the availability of new global data sets. GeoJournal 61:335–344

    Article  Google Scholar 

  • Klein Goldewijk K, van Drecht G (2006) HYDE3: current and historical population and land cover. In: Bouwman AF, Kram T, Klein Goldewijk K (eds) Integrated modeling of global environmental change. An overview of IMAGE 2.4. Netherlands Environmental Assessment Agency (MNP), Bilthoven, The Netherlands

    Google Scholar 

  • Knorr W (2009) Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophys Res Lett 36:L21710. doi:10.1029/2009GL040613

    Article  Google Scholar 

  • Kohlmaier GH, Weber M, Houghton RA (eds) (1998) Carbon dioxide mitigation in forestry and wood industry. Springer, Berlin

    Google Scholar 

  • Kozlowski TT (2002) Physiological ecology of natural regeneration of harvested and disturbed forest stands: implications for forest management. For Ecol Manage 158:195–221

    Article  Google Scholar 

  • Kurz WA et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    Article  PubMed  CAS  Google Scholar 

  • Kutsch WL et al (2010) The net biome production of full crop rotations in Europe. Agric Ecosyst Environ 139:336–345

    Article  Google Scholar 

  • Lal R (2001) Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim Chang 51:35–72

    Article  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  Google Scholar 

  • Luyssaert S, Schulze E-D, Börner A et al (2008) Old-growth forests as global carbon sinks. Nature 455:213–215. doi:10.1038/nature07276

    Article  PubMed  CAS  Google Scholar 

  • Mann LK (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the central United States. Geoderma 36:241–253

    Article  Google Scholar 

  • Mann LK (1986) Changes in soil carbon storage after cultivation. Soil Sci 142:279–288

    Article  CAS  Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C et al (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–701

    Article  CAS  Google Scholar 

  • Mather AS (1992) The forest transition. Area 24:367–379

    Google Scholar 

  • Morton DC, DeFries RS, Randerson JT et al (2008) Agricultural intensification increases deforestation fire activity in Amazonia. Glob Chang Biol 14:2262–2275

    Article  Google Scholar 

  • Murty D, Kirschbaum MF, McMurtrie RE, McGilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol 8:105–123

    Article  Google Scholar 

  • Myers N (1980) Conversion of tropical moist forests. National Academy of Sciences Press, Washington, DC

    Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manage 259:857–866

    Article  Google Scholar 

  • Neill C, Davidson EA (2000) Soil carbon accumulation or loss following deforestation for pasture in the Brazilian Amazon. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. CRC Press, Boca Raton, pp 197–211

    Google Scholar 

  • Oldeman LR (1994) The global extent of soil degradation. In: Greenland DJ, Szaboles I (eds) Soil resilience and sustainable land Use. CAB International, New York, pp 99–118

    Google Scholar 

  • Olofsson J, Hickler T (2008) Effects of human land use on the global carbon cycle during the last 6,000 years. Veg Hist Archeobot 17:605–615. doi:10.1007/s00334-007-0126-6

    Article  Google Scholar 

  • Osher LJ, Matson PA, Amundson R (2003) Effect of land use change on soil carbon in Hawaii. Biogeochemistry 65:213–232

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests, 1990–2007. Science 333:988–993

    Article  PubMed  CAS  Google Scholar 

  • Parfitt RL, Scott NA, Ross DJ, Salt GJ, Tate KR (2003) Landuse change effects on soil C and N transformations in soils of high N status: comparisons under indigenous forest, pasture and pine plantation. Biogeochemistry 66:203–221

    Article  CAS  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manage 168:241–257

    Article  Google Scholar 

  • Piao S, Ciais P, Friedlingstein P et al (2009) Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochem Cycles 23:GB4026. doi:10.1029/2008GB003339

    Article  Google Scholar 

  • Pinter N, Fiedel S, Keeley JE (2011) Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration. Quaternary Sci Rev 30:269–272

    Article  Google Scholar 

  • Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem Cycles 22:GB3018. doi:10.1029/2007GB003153

    Article  Google Scholar 

  • Pongratz J, Reick CH, Raddatz T, Claussen M (2009) Effects of anthropogenic land cover change n the carbon cycle of the last millennium. Global Biogeochem Cycles 23:GB4001. doi:10.1029/2009GB003488

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  • Potere D, Schneider A (2007) A critical look at representations of urban areas in global maps. GeoJournal 69:55–80

    Article  Google Scholar 

  • Prentice IC, Harrison SP, Bartlein PJ (2011) Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol 189:988–998

    Article  PubMed  CAS  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027

    Article  CAS  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22:GB1003. doi:10.1029/2007GB002952

    Article  Google Scholar 

  • Reick CH, Raddatz T, Pongratz JM, Claussen M (2011) Contribution of anthropogenic land cover change emissions to preindustrial atmospheric CO2. Tellus 62B:329–336

    Google Scholar 

  • Richter DdeB, Houghton RA (2011) Gross CO2 fluxes from land-use change: implications for reducing global emissions and increasing sinks. Carbon Manag 2:41–47

    Article  CAS  Google Scholar 

  • Schipper LA, Baisden WT, Parfitt RL, Ross W, Claydon JJ, Arnold G (2007) Large losses of soil C and N from soil profiles under pasture in New Zealand during the past 20 years. Glob Chang Biol 13:1138–1144

    Article  Google Scholar 

  • Schlesinger WH (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR, Reichle DE (eds) The changing carbon cycle: a global analysis. Springer, New York, pp 194–220

    Google Scholar 

  • Schneider A, Friedl MA, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ Res Lett 4. doi:1088/1748-9326/4/4/044003

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol System 28:517–544

    Article  Google Scholar 

  • Shevliakova E et al (2009) Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Global Biogeochem Cycles 23:GB2022. doi:10.1029/2007GB003176

    Article  Google Scholar 

  • Smith DL, Johnson LC (2003) Expansion of Juniperus virginiana L. in the Great Plains: changes in soil organic carbon dynamics. Global Biogeochem Cycles 17:1062. doi:10.1029/2002GB001990

    Article  Google Scholar 

  • Smith WN, Desjardins RL, Pattey E (2000) The net flux of carbon from agricultural soils in Canada 1970–2010. Glob Chang Biol 6:557–568

    Article  Google Scholar 

  • Smith SV, Renwick WH, Buddemeier RW, Crossland CJ (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem Cycles 15:697–707

    Article  CAS  Google Scholar 

  • Smith JE, Heath LS, Skog KE, Birdsey RA (2006) Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA, 216 pp

    Google Scholar 

  • Smith P, Martino D, Cai Z et al (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Stallard RF (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochem Cycles 12:231–257

    Article  CAS  Google Scholar 

  • Strassmann KM, Joos F, Fischer G (2008) Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus 60B:583–603

    CAS  Google Scholar 

  • Uhl C, Buschbacher R, Serrao EAS (1988) Abandoned pastures in eastern Amazonia. I. Patterns of plant succession. J Ecol 76:663–681

    Article  Google Scholar 

  • Uhlig J, Hall CAS, Nyo T (1994) Changing patterns of shifting cultivation in selected countries in Southeast Asia and their effect on the global carbon cycle. In: Dale V (ed) Effects of land-use change on atmospheric CO2 concentrations. South and Southeast Asia as a case study. Springer, New York, pp 145–200

    Chapter  Google Scholar 

  • Van Minnen JG, Klein Goldewijk K, Stehfest E et al (2009) The importance of three centuries of land-use change for the global and regional terrestrial carbon cycle. Clim Chang 97:123–144

    Article  CAS  Google Scholar 

  • Wang Z, Chappellaz J, Park K, Mak JE (2010) Large variations in southern hemisphere biomass burning during the last 650 years. Science 330:1663–1666

    Article  PubMed  CAS  Google Scholar 

  • West TO et al (2010) Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. Ecol Appl 20:1074–1086

    Article  PubMed  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943

    Article  PubMed  CAS  Google Scholar 

  • World Commission on Forests and Sustainable Development (1999) Our forests, our future. Cambridge University Press, Cambridge

    Google Scholar 

  • Yanai RD, Currie WS, Goodale CL (2003) Oil carbon dynamics after forest harvest: an ecosystem paradigm revisited. Ecosystems 6:97–212

    Article  Google Scholar 

  • Zummo LM, Friedland AJ (2011) Soil carbon release along a gradient of physical disturbance in a harvested northern hardwood forest. For Ecol Manage 261:1016–1026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Houghton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Houghton, R.A. (2012). Historic Changes in Terrestrial Carbon Storage. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_4

Download citation

Publish with us

Policies and ethics